#' @details Please be aware that the kernel computation can be rather slow and
#' memory demanding.
#' This is a reference table of the peak memory usage and computing time
#' for the regularised Laplacian kernel
#' given the order of the network:
#'
#' 5k: 900MB & 250s
#'
#' 10k: 3,200MB & 2,200s
#'
#' 15k: 8,000MB & 8,000s
#'
#' 20k: 13,000MB & 21,000s
#'
#' However, given a network to study,
#' this step is a one-time task than can be stored and reused.
#'
#' @param graph undirected igraph object.
#' If the edges have weights, those should typically be non-negative.
#' @param sigma2 numeric value, parameter \eqn{\sigma^2} of the kernel -
#' higher values force more spreading in the network
#' @param add_diag numeric value or vector of length \code{vcount(graph)},
#' term to regularise the spectrum of the Laplacian
#' @param a numeric value greater or equal to 2, which acts as a
#' regularisation term.
#' Can also be a vector of length \code{vcount(graph)}
#' @param p integer greater than 0, the number of steps for the random walk
#' @param normalized logical, should the normalised (\code{TRUE}) or
#' unnormalised (\code{FALSE}) graph Laplacian matrix be used?
#'
#' @rdname kernels
#'
#' @return A kernel matrix with adequate dimnames
#'
#' @examples
#' data(graph_toy)
#' K_lap <- regularisedLaplacianKernel(graph_toy)
#' K_diff <- diffusionKernel(graph_toy)
#' K_pstep <- pStepKernel(graph_toy)
#' K_ct <- commuteTimeKernel(graph_toy)
#' K_ic <- inverseCosineKernel(graph_toy)
#' is_kernel(K_lap)
#'
#' @references
#' The regularised Laplacian, diffusion, p-step and
#' inverse cosine kernels:
#' Smola, A. J., & Kondor, R. (2003, August).
#' Kernels and regularization on graphs.
#' In COLT (Vol. 2777, pp. 144-158).
#'
#' The commute time kernel:
#' Yen, L., Fouss, F., Decaestecker, C., Francq, P.,
#' & Saerens, M. (2007). Graph nodes clustering based on
#' the commute-time kernel.
#' Advances in Knowledge Discovery and Data Mining, 1037-1045.
#'
#' Benchmark on kernels:
#' Valentini, G., Paccanaro, A., Caniza, H., Romero, A. E., & Re, M. (2014).
#' An extensive analysis of disease-gene associations
#' using network integration and fast kernel-based
#' gene prioritization methods.
#' Artificial Intelligence in Medicine, 61(2), 63–78.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.