Man pages for bakaburg1/BaySREn
BaySREn. An R package to automatise citation collection and screening in Systematic Reviews. Based on Bayesian active machine learning

add_cumulativeAdd cumulative numbers of positive and negative matches to a...
add_negative_termsAdd negative terms to rules
analyse_grid_searchAnalyse the results of a parameter grid search
BaySREn-packageA package to automatise citation collection and screening in...
clean_date_filter_argTransform a year range into the format required by a specific...
clean_record_textfieldsClean up problematic text in the citation data.
coalesce_labelsJoin classification labels into one
compute_BART_modelUse Bayesian Additive Regression Trees to predict records...
compute_changesDescribe changes in the record labels after a...
consolidate_resultsInclude manual review in annotation result summaries
create_annotation_fileCreate an annotation data set ready for relevance...
create_sessionCreate a Session starting from an annotation data set.
create_training_setCreate the training set for the automatic classification
DTM.add_ngramsFind non-consecutive n-grams
DTM.aggr_synonymsAggregate redundant terms
enrich_annotation_fileEnrich an Annotation data set with predictions based on a...
estimate_performanceEvaluate and report classification performance of given an...
estimate_positivity_rate_modelTrain a simple Bayesian logistic model on classification...
extract_rulesExtract screening rules from an Annotation data set
extract_source_file_pathsExtract the path to citation records files
extract_var_impExtract the importance of features in the Document Term...
fix_duplicated_recordsResolve duplicated records in a record data frame
format_intervalFormat a 3-values statistic
format_performancePretty formatting of Session performance analysis
format_var_impFormat variable importance results
generate_rule_selection_setGenerate a rule selection set for user review
get_session_filesRetrieve the path of the resources linked to a session.
get_source_distributionDistribution of the number of sources in common per record
import_classificationImport classifications from a previously labelled annotation...
import_dataRead a data file/object
join_recordsJoin citation data frames and resolve record duplication
lemmatizeTransform words into their base form
order_by_query_matchReorder a data frame of records according to simple query...
parse_embaseParse EMBASE raw data
parse_ieeeParse IEEE raw data
parse_pubmedParse Pubmed raw data
parse_scopusParse SCOPUS raw data
parse_wosParse Web of Science raw data
perform_grid_evaluationPerform a grid evaluation of parameters to tune the...
perform_search_sessionWrapper function to acquire citation data from multiple...
plot_classification_trendPlot the cumulative trend of positive and negative labelled...
plot_predictive_densitiesPlot posterior predictive distributions generated by the...
print_tablePublication friendly tables for .rmd files
read_bib_filesImport and parse citation data files
rules_to_queryTransform a rule set in a search query
search_ieeeAutomatic search on IEEE database
search_pubmedAutomatic search on Pubmed database
search_wosAutomatic search on Web Of Science database
simplify_rulesetRemove redundant rules and rule components
source_session_summary_to_listFormat records' source distribution as a list
summarise_annotationsDescribe results of a Classification/Review session
summarise_annotations_by_sessionDescribe results of all Classification/Review sessions
summarise_by_sourceRecord distribution between sources in an Annotation file
summarise_sources_by_sessionRecord distribution between sources for each session
summarise_vectorSummarise a discrete vector
text_to_DTMConvert a vector of text documents into a Document Term...
tokenize_authorsTokenize authors in records
tokenize_keywordsTokenize keywords in records
tokenize_MESHTokenize MESH keywords in records
tokenize_textClean up text into tokens
bakaburg1/BaySREn documentation built on March 30, 2022, 12:16 a.m.