multivariate: Multivariate Analysis Of Sexual Dimorphism

Description Usage Arguments Details Value Examples

View source: R/multivariate.R

Description

Multivariate extension of Greene t test t_greene

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
multivariate(
  x,
  R.res = NULL,
  Trait = 1,
  Pop = 2,
  type_manova = "II",
  manova_test_statistic = "W",
  interact_manova = TRUE,
  es_manova = "none",
  univariate = FALSE,
  padjust = "none",
  ...,
  lower.tail = FALSE,
  CI = 0.95,
  digits = 4
)

Arguments

x

Data frame or list containing summary statistics for multiple parameters measured in both sexes in two or more populations.

R.res

Pooled within correlational matrix, Default: NULL

Trait

Number of the column containing names of measured parameters, Default: 1

Pop

Number of the column containing populations' names, Default: 2

type_manova

type of MANOVA test "I","II" or "III", Default:"II".

manova_test_statistic

type of test statistic used either "W" for "Wilks","P" for "Pillai", "HL" for "Hotelling-Lawley" or "R" for "Roy's largest root", Default: "W".

interact_manova

Logical; if TRUE calculates MANOVA for the interaction effects,Default: TRUE.

es_manova

effect size either ,"eta" for eta squared, or "none"for not reporting an effect size, Default:"none".

univariate

Logical; if TRUE conducts multiple univariate analyses on different parameters separately, Default: FALSE

padjust

Method of p.value adjustment for multiple comparisons following p.adjust.methods Default: "none".

...

Additional arguments that could be passed to univariate

lower.tail

Logical; if TRUE probabilities are 'P[X <= x]', otherwise, 'P[X > x]'., Default: FALSE

CI

confidence interval coverage takes value from 0 to 1, Default: 0.95.

digits

Number of significant digits, Default: 4

Details

Data can be entered either as a data frame of summary statistics as in baboon.parms_df. In that case the pooled within correlational matrix 'R.res' should be entered as a separate argument as in baboon.parms_R. Another acceptable format is a named list of matrices containing different summary statistics as well as the correlational matrix as in baboon.parms_list. By setting the option 'univariate' to 'TRUE', multiple 'ANOVA's can be run on each parameter independently with the required p.value correction using p.adjust.methods.

Value

MANOVA table. When the term is followed by '(E)' an exact f-value is calculated.

Examples

1
2
3
4
5
6
7
8
9
# x is a data frame with separate correlational matrix
library(TestDimorph)
multivariate(baboon.parms_df, R.res = baboon.parms_R)
# x is a list with the correlational matrix included
library(TestDimorph)
multivariate(baboon.parms_list, univariate = TRUE, padjust = "bonferroni")
# reproduces results from Konigsberg (1991)
multivariate(baboon.parms_df, R.res = baboon.parms_R)[3, ]
multivariate(baboon.parms_df, R.res = baboon.parms_R, interact_manova = FALSE)

bassam-abulnoor/TestDimorph documentation built on Jan. 29, 2021, 8:21 a.m.