library(ggplot2)
library(Rmisc)
load("ordinal-data.Rdata")
low.dim.data <- ordinal.data$low
high.dim.data <- ordinal.data$high
limit.data <- ordinal.data$limit
term <- c("TPR","TNR","ReErr","SLE","BS","MR")

class.num = 4

support.size = 10

low dim case

n = 500

p = 20,25,30,35,40

fig <- list()
for(i in 1:6){
    fig[[i]] <- ggplot(ordinal.data$low, aes(x=p, y=.data[[term[i]]], fill = method)) +  geom_boxplot()
}
multiplot(plotlist = fig[1:6], cols = 2)
ggplot(ordinal.data$low, aes(x=p, y=time, color = method)) +  geom_point() + geom_smooth(method="lm",se=FALSE)

high dim case

n = 500
p = 500,1500,2500

fig <- list()
for(i in 1:6){
    fig[[i]] <- ggplot(ordinal.data$high, aes(x=p, y=.data[[term[i]]], fill = method)) +  geom_boxplot()
}
multiplot(plotlist = fig[1:6], cols = 2)
ggplot(ordinal.data$high, aes(x=p, y=time, color = method)) +  geom_point() + stat_smooth(formula = time~as.numeric(p),method="lm")

limit case

p = 500 n = 100,200,400,800,1600

fig <- list()
for(i in 1:6){
    fig[[i]] <- ggplot(ordinal.data$limit, aes(x=n, y=.data[[term[i]]], fill = method)) +  geom_boxplot()
}
multiplot(plotlist = fig[1:6], cols = 2)
ggplot(ordinal.data$limit, aes(x=n, y=time, color = method)) +  geom_point() + stat_smooth(formula = time~as.numeric(n),method="lm")


bbayukari/StatComp21077 documentation built on March 21, 2022, 2:03 a.m.