# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
#' @title gamma fit approximate newton method
#' @description fit gamma model with approximate newton method.
#' @param x Input matrix, of dimension \eqn{n \times p}; each row is an observation vector and each column is a predictor/feature/variable.
#' @param y The response variable, of \code{n} observations.
#' @param weights Observation weights.
#' @param beta Initial value of linear coefficient.
#' @param coef0 Initial value of intercept.
#' @param lambda L2 penalty coefficient.
#' @return Intercept and linear coefficient.
gamma_fit_approximate_newton_method <- function(x, y, weights, beta, coef0, lambda) {
.Call('_StatComp21077_gamma_fit_approximate_newton_method', PACKAGE = 'StatComp21077', x, y, weights, beta, coef0, lambda)
}
#' @title gamma fit IWLS method
#' @description fit gamma model with IWLS method.
#' @param x Input matrix, of dimension \eqn{n \times p}; each row is an observation vector and each column is a predictor/feature/variable.
#' @param y The response variable, of \code{n} observations.
#' @param weights Observation weights.
#' @param beta Initial value of linear coefficient.
#' @param coef0 Initial value of intercept.
#' @param lambda L2 penalty coefficient.
#' @return Intercept and linear coefficient.
gamma_fit_IWLS_method <- function(x, y, weights, beta, coef0, lambda) {
.Call('_StatComp21077_gamma_fit_IWLS_method', PACKAGE = 'StatComp21077', x, y, weights, beta, coef0, lambda)
}
pro <- function(X, beta, coef0) {
.Call('_StatComp21077_pro', PACKAGE = 'StatComp21077', X, beta, coef0)
}
grad_cpp <- function(X, y, beta, coef0) {
.Call('_StatComp21077_grad_cpp', PACKAGE = 'StatComp21077', X, y, beta, coef0)
}
loss_function <- function(X, y, weights, beta, coef0, lambda) {
.Call('_StatComp21077_loss_function', PACKAGE = 'StatComp21077', X, y, weights, beta, coef0, lambda)
}
fit_ordinal <- function(X, y, weights, beta, coef0, lambda, primary_model_fit_max_iter, step0) {
.Call('_StatComp21077_fit_ordinal', PACKAGE = 'StatComp21077', X, y, weights, beta, coef0, lambda, primary_model_fit_max_iter, step0)
}
loss_API <- function(n, X, y, beta, xpsexp) {
.Call('_StatComp21077_loss_API', PACKAGE = 'StatComp21077', n, X, y, beta, xpsexp)
}
gradient_API <- function(n, X, y, beta, xpsexp) {
.Call('_StatComp21077_gradient_API', PACKAGE = 'StatComp21077', n, X, y, beta, xpsexp)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.