zilgm_negbin: Neiborhood selection under the zero-inflated negative...

View source: R/ZILNBGM_core.R

zilgm_negbinR Documentation

Neiborhood selection under the zero-inflated negative binomial I distribution for Zero-inflated Local Graphical Model

Description

Neiborhood selection under the zero-inflated negative binomial distribution I by zero-inflated negative binomial regression with l_1-regularization.

Usage

zilgm_negbin(y, x, lambda, weights = NULL, update_type = c("IRLS", "MM"), 
             penalty.factor = NULL, thresh = 1e-6, EM_tol = 1e-5, EM_iter = 3e+2,
 			 tol = 1e-6, maxit = 3e+2, theta = NULL)

Arguments

y

A numeric vector. A response variable y.

x

A design matrix x.

lambda

A regularization parameter to control a level of l_1-penalty.

weights

Weights vector for observations. A default value for each observation is 1.

update_type

Types of algorithm for estimating coefficients.

penalty.factor

Weights vector for coefficients of each variable. A default value for each variable is 1.

thresh

Threshold value for the estimated coefficients.

EM_tol

Convergence tolerance for EM algorithm.

EM_iter

A integer value. Maximum number of EM algorithm iterations.

tol

Convergence tolerance for coordinate descent algorithm.

maxit

A integer value. Maximum number of coordinate descent iterations.

theta

A numeric value. If the argument is given value, the neiborhood selection is implemented using this dispersion value without estimating the dispersion parameter.

Value

An S3 object with the following slots

beta

Estimated coefficients vector.

theta

Estimated dispersion parameter theta.

prob

Estimated probability of structural zero.

pos_zero

Indices of zero values.

iteration

Iteration numbers until convergence.

loglik

l_1-penalized negative log-likelihood value.

call

The matched call.

References

Wang, Z., S. Ma, M. Zappitelli, C. Parikh, C.-Y. Wang, and P. Devarajan, 2016: Penalized count data regression with application to hospital stay after pediatric cardiac surgery. Stat. Methods Med. Res., 25, no.6, 2685-2703.
Choi, H., J. Gim, S. Won, Y. J. Kim, S. Kwon, and C. Park, 2017: Network analysis for count data with excess zeros. BMC genetics, 18, no. 1, 1-10.
Park, B., H. Choi, C. Park, 2021: Negative binomial graphical model with excess zeros.

Examples

# Zero-inflated negative binomial I regression with l_1 penalty
require(ZILGM)
set.seed(1)
n = 100; p = 10; prob = 2 / p;
A = generate_network(p, prob, type = "random")
simul_dat = zilgm_sim(A = A, n = n, p = p, zlvs = 0.1, 
					  family = "negbin", signal = 1.5, theta = 0.5, noise = 0.0)
y = simul_dat$X[, 1]
X = simul_dat$X[, -1]
negbin_fit = zilgm_negbin(y = y, x = X, lambda = 1, update_type = "IRLS")

bbeomjin/ZILGM documentation built on Aug. 5, 2023, 5:52 a.m.