soft_lr: Partially Supervised Logistic Regression with Soft Labels...

View source: R/em_soft_lda.R

soft_lrR Documentation

Partially Supervised Logistic Regression with Soft Labels (Robust Version)

Description

Fits a logistic regression model using E²M with soft labels, adding robustness: multiple initial attempts, ridge penalty, stable line search, and optional verbosity.

Usage

soft_lr(
  X,
  PL,
  max_iter = 100,
  tol = 1e-06,
  lambda = 1e-05,
  n_starts = 3,
  verbose = FALSE
)

Arguments

X

A numeric matrix n x d.

PL

A numeric matrix n x K of plausibilities.

max_iter

Integer, max E²M iterations. Default 100.

tol

Tolerance for convergence in log-likelihood. Default 1e-6.

lambda

Ridge regularization parameter for coefficients. Default 1e-5.

n_starts

Number of initializations to try. Default 3.

verbose

Logical, if TRUE prints progress. Default FALSE.

Value

A list:

beta

(d+1) x (K-1) coefficient matrix

zeta

Posterior class probabilities n x K

loglik

Final log-likelihood

iter

Iterations

References

Quost, B., Denoeux, T., Li, S. (2017). Parametric classification with soft labels using the Evidential EM algorithm. Advances in Data Analysis and Classification, 11(4), 659-690.


bbuchsbaum/discursive documentation built on April 14, 2025, 4:57 p.m.