View source: R/fmri_latent_lm.R
fmri_latent_lm | R Documentation |
This function estimates a regression model for fMRI data using a latent component dataset.
The dataset must be of type latent_dataset
, which itself requires a LatentNeuroVec
input.
fmri_latent_lm(
formula,
block,
baseline_model = NULL,
dataset,
durations,
drop_empty = TRUE,
robust = FALSE,
autocor = c("none", "auto", "ar1", "ar2", "arma"),
bootstrap = FALSE,
nboot = 1000,
...
)
formula |
A formula specifying the regression model. |
block |
A factor indicating the block structure of the data. |
baseline_model |
An optional baseline model. |
dataset |
A dataset of class 'latent_dataset'. |
durations |
The duration of events in the dataset. |
drop_empty |
Whether to drop empty events from the model. Default is TRUE. |
robust |
Whether to use robust regression methods. Default is FALSE. |
autocor |
The autocorrelation correction method to use on components. One of 'none', 'auto', 'ar1', 'ar2', or 'arma'. Default is 'none'. |
bootstrap |
Whether to compute bootstrapped parameter estimates. Default is FALSE. |
nboot |
The number of bootstrap iterations. Default is 1000. |
... |
Additional arguments. |
An object of class 'fmri_latent_lm' containing the regression model and dataset.
This method is currently experimental.
# Estimate the fMRI regression model using the latent dataset
#result <- fmri_latent_lm(formula = formula, block = block, dataset = dset,
# durations = NULL, drop_empty = TRUE, robust = FALSE)
# Print the result
#print(result)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.