fmri_lm_fit: Fit an fMRI Linear Regression Model with a Specified Fitting...

View source: R/fmrilm.R

fmri_lm_fitR Documentation

Fit an fMRI Linear Regression Model with a Specified Fitting Strategy

Description

This function fits an fMRI linear regression model using the specified fmri_model object, dataset, and data splitting strategy (either "runwise" or "chunkwise"). It is primarily an internal function used by the fmri_lm function.

Usage

fmri_lm_fit(
  fmrimod,
  dataset,
  strategy = c("runwise", "chunkwise"),
  cfg,
  nchunks = 10,
  use_fast_path = FALSE,
  progress = FALSE,
  extra_nuisance = NULL,
  keep_extra_nuisance_in_model = FALSE,
  parallel_voxels = FALSE,
  ...
)

Arguments

fmrimod

An fmri_model object.

dataset

An fmri_dataset object containing the time-series data.

strategy

The data splitting strategy, either "runwise" or "chunkwise". Default is "runwise".

cfg

An fmri_lm_config object containing all fitting options. See fmri_lm_control.

nchunks

Number of data chunks when strategy is "chunkwise". Default is 10.

use_fast_path

Logical. If TRUE, use matrix-based computation for speed. Default is FALSE.

progress

Logical. Whether to display a progress bar during model fitting. Default is FALSE.

extra_nuisance

Optional matrix or formula specifying additional nuisance regressors.

keep_extra_nuisance_in_model

Logical. Whether to keep extra nuisance regressors in the final model. Default is FALSE.

parallel_voxels

Logical. If TRUE, voxelwise AR processing within runs is parallelised using future.apply. Default is FALSE.

...

Additional arguments.

Value

A fitted fMRI linear regression model with the specified fitting strategy.

See Also

fmri_lm, fmri_model, fmri_dataset


bbuchsbaum/fmrireg documentation built on June 10, 2025, 8:18 p.m.