Man pages for bbuchsbaum/multivarious
Extensible Data Structures for Multivariate Analysis

add_nodeadd a pre-processing stage
add_node.prepperAdd a pre-processing node to a pipeline
apply_rotationApply rotation
apply_transformapply a pre-processing transform
bi_projectorConstruct a bi_projector instance
bi_projector_unionA Union of Concatenated 'bi_projector' Fits
block_indicesget block_indices
block_indices.multiblock_projectorExtract the Block Indices from a Multiblock Projector
block_lengthsget block_lengths
bootstrapBootstrap Resampling for Multivariate Models
bootstrap.pcaPCA Bootstrap Resampling
centercenter a data matrix
classifierConstruct a Classifier
classifier.discriminant_projectorCreate a k-NN classifier for a discriminant projector
classifier.multiblock_biprojectorMultiblock Bi-Projector Classifier
classifier.projectorcreate classifier from a projector
coef.cross_projectorExtract coefficients from a cross_projector object
coef.multiblock_projectorCoefficients for a Multiblock Projector
colscalescale a data matrix
componentsget the components
compose_partial_projectorCompose Multiple Partial Projectors
compose_projectorCompose Two Projectors
concat_pre_processorsbind together blockwise pre-processors
convert_domainTransfer data from one input domain to another via common...
cPCAContrastive PCA (cPCA) with Adaptive Computation Methods
cross_projectorTwo-way (cross) projection to latent components
discriminant_projectorConstruct a Discriminant Projector
feature_importanceEvaluate feature importance
feature_importance.classifierEvaluate Feature Importance
freshGet a fresh pre-processing node cleared of any cached data
fresh.prepperCreate a fresh pipeline from an existing prepper
geneigGeneralized Eigenvalue Decomposition
group_meansCompute column-wise mean in X for each factor level of Y
init_transforminitialize a transform
inverse_projectionInverse of the Component Matrix
is_orthogonalis it orthogonal
multiblock_biprojectorCreate a Multiblock Bi-Projector
multiblock_projectorCreate a Multiblock Projector
nblocksget the number of blocks
ncompGet the number of components
nystrom_approxNyström approximation for kernel-based decomposition (Unified...
partial_inverse_projectionPartial Inverse Projection of a Columnwise Subset of...
partial_projectPartially project a new sample onto subspace
partial_project.composed_partial_projectorPartial Project Through a Composed Partial Projector
partial_projectorConstruct a partial projector
partial_projector.projectorconstruct a partial_projector from a 'projector' instance
passa no-op pre-processing step
pcaPrincipal Components Analysis (PCA)
perm_ciPermutation Confidence Intervals
perm_ci.pcaPermutation-Based Confidence Intervals for PCA Components
predict.classifierpredict with a classifier object
prepprepare a dataset by applying a pre-processing pipeline
prep.prepperfinalize a prepper pipeline
prinangCompute principal angles for a set of subspaces
print.bi_projectorPretty Print S3 Method for bi_projector Class
print.bi_projector_unionPretty Print S3 Method for bi_projector_union Class
print.classifierPretty Print Method for 'classifier' Objects
print.concat_pre_processorPrint a concat_pre_processor object
print.multiblock_biprojectorPretty Print Method for 'multiblock_biprojector' Objects
print.prepperPrint a prepper pipeline
print.pre_processorPrint a pre_processor object
print.projectorPretty Print Method for 'projector' Objects
print.regressPretty Print Method for 'regress' Objects
projectNew sample projection
project_blockProject a single "block" of data onto the subspace
project_block.multiblock_projectorProject Data onto a Specific Block
project.cross_projectorproject a cross_projector instance
projectorConstruct a 'projector' instance
project_varsProject one or more variables onto a subspace
rank_scoreCalculate Rank Score for Predictions
reconstructReconstruct the data
refitrefit a model
regressMulti-output linear regression
relative_eigenRelative Eigenanalysis with Ecosystem Integration
reprocessapply pre-processing parameters to a new data matrix
reprocess.cross_projectorreprocess a cross_projector instance
residualizeCompute a regression model for each column in a matrix and...
residualsObtain residuals of a component model fit
reverse_transformreverse a pre-processing transform
rf_classifierconstruct a random forest wrapper classifier
rf_classifier.projectorCreate a random forest classifier
rotateRotate a Component Solution
rotate.pcaRotate PCA Loadings
scoresRetrieve the component scores
sdevstandard deviations
shapeShape of the Projector
shape.cross_projectorshape of a cross_projector instance
standardizecenter and scale each vector of a matrix
std_scoresCompute standardized component scores
svd_wrapperSingular Value Decomposition (SVD) Wrapper
transposeTranspose a model
truncatetruncate a component fit
bbuchsbaum/multivarious documentation built on Dec. 23, 2024, 7:47 a.m.