bayesEst | R Documentation |
bayesEst
is the revised Greedy Equivalence Search (GES) algorithm developed
by Joseph D. Ramsey, Director of Research Computing, Department of Philosophy,
Carnegie Mellon University, Pittsburgh, PA.
bayesEst(df, depth = 3, significance = 0.05, verbose = FALSE,
java.parameters = NULL, priorKnowledge = NULL)
df |
Data Frame of the dataset. |
depth |
integer indicating a number of nodes conditioned on in the search.
It ranges from -1 for unlimited nodes, otherwise a number
>= 0. By default, |
significance |
floating point indicating the statistical value (between zero and one) for the conditional independence test. By default,
|
verbose |
boolean indicating whether or not if verbose output should
be printed. |
java.parameters |
string indicating an optional parameters for JVM.
For example, java.parameters = "-Xmx1024M". By default,
|
priorKnowledge |
object indicating a prior knowledge of the graph. By default,
|
The Bayes estimator uses the maximum likelihood estimation in order to estimate causal graph.
More detail about bayesEst implementation, please visit the java code.
A list containing the bayesEst's parameters, the input dataset, the result's nodes, and the result's edges.
data("audiology")
#Compute bayes Estimation
bayesEst <- bayesEst(df=audiology, depth = -1, verbose = TRUE)
bayesEst$parameters #Show the bayesEst's parameters
bayesEst$datasets #Show the dataset
bayesEst$nodes #Show the result's nodes
bayesEst$edges #Show the result's edges
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.