Package that helps to deploy a trained model to production whit minimal code. It creates an API using plumber package with several useful endpoints.
library(tidyverse)
library(caret)
library(plumberModel)
model <- train(iris %>% select(-Species), iris$Species)
api <- PlumberModel$new(model)
api$run(port = 8000)
GET
/modelInfoReturns a JSON with basic information about the model.
{
"name":["Unnamed model"],
"method":["rf"],
"type":["Regression"],
"version":["1.0.0"],
"hyperParameters":[{"mtry":2}]
}
GET
/trainResultsReturns the metrics calculated for the trained model.
[
{"Metric":"RMSE","Value":0.2799},
{"Metric":"Rsquared","Value":0.9748},
{"Metric":"MAE","Value":0.2154},
{"Metric":"RMSESD","Value":0.0238},
{"Metric":"RsquaredSD","Value":0.004},
{"Metric":"MAESD","Value":0.0181}
]
GET
/inputFeaturesReturns the features of the data used to train the model and some information about them.
{
"Sepal.Length":{"class":["numeric"],"mean":[5.8433],"std":[0.6857]},
"Sepal.Width":{"class":["numeric"],"mean":[3.0573],"std":[0.19]},
"Petal.Width":{"class":["numeric"],"mean":[1.1993],"std":[0.581]},
"Species":{"class":["factor"],"levels":["setosa","versicolor","virginica"]}
}
GET
/predictPredicts using query params as features. The name of each param must match with the name of an input variable.
An example query would be:
predict?Sepal.Length=5.0&&Sepal.Width=3.5&&Petal.Width=1.21&&Species=setosa
Returns model predictions as a JSON array.
[2.5505]
POST
/predictIt has the same behavior as the GET
version, but uses POST body as input.
The body must be a JSON with the following structure:
[
{"Sepal.Length":5.1,"Sepal.Width":3.5,"Petal.Width":0.2,"Species":"setosa"},
{"Sepal.Length":4.9,"Sepal.Width":3,"Petal.Width":0.2,"Species":"setosa"},
{"Sepal.Length":4.7,"Sepal.Width":3.2,"Petal.Width":0.2,"Species":"setosa"}
]
The response would be:
[1.4379,1.4549,1.4437]
PlumberModel objects are R6 classes that inherits from plumber class.
In order to add custom endpoints one would have to define a subclass.
The following example adds a new '/helloWorld' endpoint:
CustomPlumberModel <- R6Class(
classname = "CustomPlumberModel",
inherit = PlumberModel,
public = list(
initialize = function(mdl){
super$initialize(mdl)
self$handle("GET", "/helloWorld", function(req, res){
"hello world!"
})
}
)
)
You can find more information about plumber and its quirks on plumber documentation
By default PlumberModel only supports models trained with caret library. In order to make it work with custom models it is necessary to implement several generic S3 functions.
The following example would work with a custom model with class 'customModel'
#' Gets basic info about the model.
#' @param mdl Object with class 'customModel'.
#' @return Named list with the custom information about the model
modelInfo.customModel <- function(mdl){
...
}
#' Returns a description of each input variable of the model.
#' @param mdl Object with class 'customModel'.
#' @return Named list with the following structure:
#' list(
#' <var_name_1> = list(class = ["numeric"]), <other_info> = ..., ...),
#' <var_name_2> = list(class = ["factor"], <levels> = ["lvl1", "lvl2"], ...)
#¡ )
inputFeatures.customModel <- function(mdl){
...
}
#' Gets the metrics of the model.
#' @param mdl Object with class 'customModel'.
#' @return Data.frame with the metrics.
trainResults.customModel <- function(mdl){
...
}
#' Predicts using the model.
#' @param mdl Object with class 'customModel'.
#' @return Vector with the predictionss
predict.customModel <- function(mdl){
...
}
Optionally, you cand build a static web server on top of the API, for monitoring
the model.
You must use the class PlumberModelWebApp
and access the index url '/'.
library(tidyverse)
library(caret)
library(plumberModel)
modelo <- train(iris %>% select(-Species), iris$Species)
api <- PlumberModelWebApp$new(modelo)
api$run(port = 8000)
You can find examples in the examples folder.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.