PBoot | R Documentation |
Applies parametric bootstrap to an estimated distribution
PBoot(
d,
n,
nsim = 1000,
trim = c(-Inf, Inf),
doTrunc = FALSE,
par.low = rep(-Inf, nPar(d)),
par.high = rep(Inf, nPar(d)),
method = "Nelder-Mead",
control = list(fnscale = -1, maxit = 10000)
)
d |
distributions3 object, estimated distribution. Typically, the output of estim_ML. |
n |
Integer, size of each resampled dataset. Typically length(y), where y are calibration data. |
nsim |
Integer, number of resampled datasets. |
trim |
Numeric vector of size 2, trimming bounds. |
doTrunc |
Logical, do truncation? default FALSE, i.e. rectification is used. |
par.low |
Numeric vector of size nPar(d), lower bounds for parameters. |
par.high |
Numeric vector of size nPar(d), higher bounds for parameters. |
method |
Character string, optimization method, see ?optim. |
control |
List, controls for optimization algorithm, see ?optim. |
a matrix of size nsim * nPar(d) containing the estimated parameters
# EXAMPLE 1
# Define Normal distribution
norm <- Normal(mu=1,sigma=2)
# generate data and reset all negative values to zero
y <- random(norm,200); y[y<0] <- 0
# Estimate rectified Gaussian distribution.
fit <- estim_ML(d=norm,y=y,trim=c(0,Inf),par.low=c(-Inf,0))
# Do parametric bootstrap.
boot <- PBoot(fit,length(y),trim=c(0,Inf),par.low=c(-Inf,0),nsim=100)
plot(boot)
# EXAMPLE 2
# Define Normal distribution
norm <- Normal(mu=0.75,sigma=0.25)
# generate data and remove all values outside [0;1]
z <- random(norm,200); y <- z[z>0 & z<1]
# Estimate truncated Gaussian distribution.
fit <- estim_ML(d=norm,y=y,trim=c(0,1),doTrunc=TRUE,par.low=c(-Inf,0))
# Do parametric bootstrap.
boot <- PBoot(fit,length(y),trim=c(0,1),doTrunc=TRUE,par.low=c(-Inf,0),nsim=100)
plot(boot)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.