# #### updated tags for what gets removed from the text parsing
# away <- "[:digit:] GvA|[:digit:] TkA|[:digit:] Blk"
# fill <- "from|by|against|to| and|giveaway|Game|Behind|of |Served|served|Bench|bench"
# goalie <- "Starting goalie|Pulled goalie|Returned goalie"
# fo <- "faceoff won"
# ice <- "Even Strength|Empty Net|Power Play|Extra Attacker"
# shots <- "Snap shot|Wrist shot|Penalty Shot"
# res <- "blocked|saved|failed attempt"
# pen <- "Holding|Tripping|Roughing|Hooking|Interference|Delay|Body Checking|Slashing|Check from Behind Misconduct|Checking from Behind|Checking|Ejection|Too Many Men|Delay of Game|Misconduct|Check"
# type <- "Minor|Major"
# score_string <- "[:digit:] - [:digit:] [A-Z]+|[:digit:] - [:digit:]"
# shoot <- "missed attempt against|scores against|Shootout|failed attempt"
# lgh <- "[:digit:] mins|[0-9]+ mins"
# abbreviations <- "TOR|MIN|BOS|CTW|MET|BUF"
# ne <- "On Ice"
#
# #' @title phf_game_data
# #' @description phf_game_data: pull in the raw data for a game_id from the PHF/NWHL API
# #'
# #' @param game_id The unique ID code for the game that you are interested in viewing the data for
# #' @import rvest
# #' @importFrom jsonlite parse_json
# #' @importFrom purrr pluck
# #' @export
# #' @examples
# #' \dontrun{
# #' phf_game_data(game_id = 368722)
# #' }
# phf_game_data <- function(game_id = 368719) {
# base_url <- "https://web.api.digitalshift.ca/partials/stats/game/play-by-play?game_id="
# full_url <- paste0(base_url, game_id)
#
# # setting the ticket as something that can be changed in case the API decides to change it's authorization
# # rather than hard-coding it in
# auth_ticket <- getOption(
# "whockeyR.phf_ticket",
# default = 'ticket="4dM1QOOKk-PQTSZxW_zfXnOgbh80dOGK6eUb_MaSl7nUN0_k4LxLMvZyeaYGXQuLyWBOQhY8Q65k6_uwMu6oojuO"'
# )
#
# # the link for the game + authorization for accessing the API
# res <- httr::RETRY(
# "GET", full_url,
# httr::add_headers(`Authorization`= auth_ticket))
# # Check the result
# # check_status is defined in the 'utils.R' folder and just checks to make sure that the API actually returns something
# check_status(res)
# plays_data <- data.frame()
# tryCatch(
# expr = {
# data <- res %>%
# httr::content(as = "text", encoding="utf-8") %>%
# jsonlite::fromJSON() %>%
# purrr::pluck("content") %>%
# rvest::read_html() %>%
# rvest::html_table()
#
# plays_data <- data[
# !sapply(
# lapply(data, function(x){
# if("Time" %in% colnames(x) && nrow(x)>0){
# return(x)
# }
# if("Play" %in% colnames(x) && nrow(x)>0){
# return(x)
# }
# }),is.null)]
# if(length(plays_data)>5){
# plays_data <- plays_data[1:5]
# }
# plays_df <- purrr::map_dfr(1:length(plays_data), function(x){
# plays_data[[x]] %>%
# normalize_columns() %>%
# dplyr::mutate(period_id = x)
# })
# },
# error = function(e) {
# message(glue::glue("{Sys.time()}: Invalid game_id or no game data available!"))
#
# },
# warning = function(w) {
# },
# finally = {
# }
# )
# return(plays_data)
# }
#
# #' @title normalize_columns
# #' @description First in processing pipeline to give normalized columns:
# #' play_type, team, time, play_description,
# #' scoring_team_abbrev, scoring_team_on_ice,
# #' defending_team_abbrev, defending_team_on_ice
# #'
# #' @param df play-by-play data frame
# #' @importFrom dplyr mutate mutate_at bind_cols lead filter select
# #' @importFrom stringr str_detect
# #'
# normalize_columns <- function(df){
# if(ncol(df)==3){
# colnames(df) <- c("play_type","team","play_description")
# df$time <- NA_character_
# }
# if(ncol(df)==10){
#
# colnames(df) <- c("play_type", "team", "time","play_description","drop1","drop2",
# "scoring_team_abbrev","scoring_team_on_ice","defending_team_abbrev","defending_team_on_ice")
# df2 <- df[,7:10]
# df2 <- df2 %>%
# dplyr::mutate_at(1:4, function(x){dplyr::lead(x,n=2)})
# df <- dplyr::bind_cols(df[,1:4], df2)
# df <- df %>%
# dplyr::filter(!is.na(.data$play_description),!stringr::str_detect(.data$team,"On Ice")) %>%
# dplyr::mutate(play_description = gsub("{{.*", "", .data$play_description, perl = TRUE))
# }else{
# colnames(df) <- c("play_type", "team", "time","play_description")
# df$scoring_team_abbrev <- NA_character_
# df$scoring_team_on_ice <- NA_character_
# df$defending_team_abbrev <- NA_character_
# df$defending_team_on_ice <- NA_character_
# df <- df %>%
# dplyr::filter(!is.na(.data$play_description),!stringr::str_detect(.data$team,"On Ice")) %>%
# dplyr::mutate(play_description = gsub("{{.*", "", .data$play_description, perl = TRUE))
# }
# df <- df %>%
# dplyr::select(.data$play_type, .data$team, .data$time, .data$play_description,
# .data$scoring_team_abbrev,.data$scoring_team_on_ice,
# .data$defending_team_abbrev, .data$defending_team_on_ice)
# return(df)
# }
#
#
# #' @title process_period
# #' @description process_period: processes the raw data of a single period from a PHF game
# #'
# #' @param data the dataframe of the period that you want parsed into a workable format of pbp data
# #' @param period which period of play is this data for? Defaults to 1
# #' @importFrom dplyr mutate row_number rename filter
# #' @importFrom janitor clean_names remove_empty
# #' @importFrom stringr str_detect
# #' @export
# #' @examples
# #' \donttest{
# #' first_period <- process_period(data = df[[1]], period = 1)
# #' }
# process_period <- function(data, period = 1) {
#
# # the raw data comes in a very very weird format where the only thing we want
# # is every other row so these two lines get us that
# odd <- seq_len(nrow(data)) %% 2
# data <- data[odd == 1, ]
#
# data <- data %>%
# # make sure that the names of columns are consistent and clean
# janitor::clean_names() %>%
# # create the id for what period it is and what overall event it is
# dplyr::mutate(
# event_no = dplyr::row_number(),
# period_id = period) %>%
# # rename some columns so that they are consistent and make sense
# dplyr::rename(
# event = .data$x,
# description = .data$play) %>%
# # only taking events that match to actual on ice stuff
# dplyr::filter(!stringr::str_detect(.data$event, 'On Ice')) %>%
# # filter(event != "Timeout") %>%
# # dplyr::filter(! grepl("On"))
# janitor::remove_empty(which = c("cols"), quiet = TRUE) %>%
# # since the NWHL/PHF website has an 'expansion' tab for goals
# # that gets put into the description column weirdly
# # so essentially filtering that out and replacing it in those cells
# dplyr::mutate(
# description = gsub("{{.*", "", .data$description, perl = TRUE))
#
# return(data)
#
# }
#
#
# #' @title load_raw_data
# #' @description load_raw_data: pull in the raw data for a game_id from the PHF/NWHL API
# #'
# #' @param game_id The unique ID code for the game that you are interested in viewing the data for
# #' @export
# #' @examples
# #' \dontrun{
# #' df <- load_raw_data(game_id = 268078)
# #' }
# load_raw_data <- function(game_id = 268078) {
#
# # if (!is.na(ticket)) {
# # auth_ticket <- ticket
# # } else {
# # auth_ticket <- getOption(
# # "whockeyR.phf_ticket",
# # default = 'ticket="4dM1QOOKk-PQTSZxW_zfXnOgbh80dOGK6eUb_MaSl7nUN0_k4LxLMvZyeaYGXQuLyWBOQhY8Q65k6_uwMu6oojuO'
# # )
# # }
#
# link <- paste0("https://web.api.digitalshift.ca/partials/stats/game/play-by-play?game_id=", game_id)
# # the link for the game + authorization for accessing the API
# data <- httr::GET(link,
# httr::add_headers(
# `Authorization`= 'ticket="4dM1QOOKk-PQTSZxW_zfXnOgbh80dOGK6eUb_MaSl7nUN0_k4LxLMvZyeaYGXQuLyWBOQhY8Q65k6_uwMu6oojuO"'
# )) %>%
# httr::content(as = "text") %>%
# jsonlite::parse_json() %>%
# purrr::pluck("content") %>%
# rvest::read_html() %>%
# rvest::html_table()
#
# }
# #' @title process_shootout
# #' @description process_shootout: processes the raw data of a shootout from a PHF game
# #'
# #' @param data the dataframe of the shootout that you want parsed into a workable format of pbp data
# #' @importFrom janitor clean_names
# #' @importFrom dplyr mutate row_number select
# #' @importFrom stringr str_extract str_replace_all str_replace str_detect
# #' @importFrom tidyr separate
# #' @export
# #' @examples
# #' \dontrun{
# #' shootout <- process_shootout(data = game_so)
# #' }
# process_shootout <- function(data) {
# # defining strings that need to be filtered out for shootouts specifically, since they're different than the regular pbp data
# score_string <- "[:digit:] - [:digit:] [A-Z]+|[:digit:] - [:digit:]"
# shoot <- "missed attempt against|scores against|Shootout"
# all <- "[:digit:] - [:digit:] [A-Z]+|[:digit:] - [:digit:]|missed attempt against|scores against|Shootout"
#
# data <- data %>%
# janitor::clean_names() %>%
# # creating variables, cleaning stuff for shootouts specifically
# # since there's a lot less variation in what can happen
# # it's easier to do the cleaning so it's in its own function
# dplyr::mutate(
# # manually defining some of the event info since it won't change in a shootout situation
# event = "Shootout",
# on_ice_situation = "shootout",
# shot_type = "shootout",
# shot_result = tolower(.data$x),
# period_id = 5,
# # using period = 5 just to keep it numeric and consistent
# event_no = dplyr::row_number(),
# description = .data$play,
# desc = stringr::str_replace_all(.data$play, "#", ""),
# # first_number = str_nth_number(.data$desc, 1),
# # second_number = str_nth_number(.data$desc, 2),
# desc = stringr::str_replace_all(.data$desc, shoot, ""),
# score = stringr::str_extract(.data$desc, score_string),
# desc = stringr::str_replace_all(.data$desc, score_string, ""),
# desc = stringr::str_replace_all(str_trim(.data$desc, side = "both"),"#", ""),
# # first_player = str_nth_non_numeric(.data$desc, n = 1),
# # second_player = str_nth_non_numeric(.data$desc, n = 2),
# leader = stringr::str_extract(.data$score, "[A-Z]+"),
# scr = stringr::str_replace_all(.data$score, "[A-Z]+", "")) %>%
# dplyr::select(-.data$play) %>%
# tidyr::separate(
# .data$scr,
# into = c("away_goals", "home_goals"),
# sep = " - ", remove = FALSE) %>%
# dplyr::select(-.data$scr, -.data$x) %>%
# dplyr::mutate(
# leader = ifelse(is.na(.data$leader), 'T', .data$leader),
# away_goals = ifelse(is.na(.data$away_goals), 0, .data$away_goals),
# home_goals = ifelse(is.na(.data$home_goals), 0, .data$home_goals),
# score = ifelse(is.na(.data$score), '0 - 0 T', .data$score),
# # extracting then replacing player numbers with commas so that we can then separate them to get shooter vs goali
# desc2 = stringr::str_replace_all(.data$description, shoot, ""),
# desc2 = stringr::str_replace_all(.data$desc2, score_string, ""),
# first_number = stringr::str_extract(.data$desc2, "#[0-9]+"),
# desc2 = stringr::str_replace(.data$desc2, first_number, ""),
# second_number = stringr::str_extract(.data$desc2, "#[0-9]+"),
# desc2 = stringr::str_replace(.data$desc2, second_number, ","),
# first_number = stringr::str_trim(stringr::str_replace(.data$first_number, "#", "")),
# second_number = stringr::str_trim(stringr::str_replace(.data$second_number, "#", "")))
#
# # running separate on the comma separated names to extract player names
# # wrapped in `suppressWarnings()` to prevent it from throwing an error in weird cases about NAs being put in
# suppressWarnings(
# data <- data %>%
# tidyr::separate(desc2, into = c("first_player", "second_player"),
# sep = ","))
#
# data <- data %>%
# # trimming off whitespace from player names
# dplyr::mutate(first_player = stringr::str_trim(first_player),
# second_player = stringr::str_trim(second_player)) %>%
# dplyr::select(-c(desc)) %>%
# # adding an extra line of cleaning in bc things sometimes remained weird
# mutate(
# first_player = stringr::str_trim(stringr::str_replace(first_player,
# "missed attempt|scores", "")),
# second_player = stringr::str_trim(stringr::str_replace(second_player,
# "Shootout|Shoout|shoout|shootout", ""))
# )
#
# return(data)
#
# }
#
# #' @title pbp_data
# #' @description pbp_data: returns all of the play-by-play data for a game into on big data frame using the process_period/shootout functions. Contains functionality to account for regulation games, overtime games, and shootouts
# #'
# #' @param data the raw list data that is generated from the load_raw_data function
# #' @importFrom dplyr mutate bind_rows filter row_number select case_when pull
# #' @importFrom tidyr pivot_wider separate fill
# #' @importFrom stringr str_replace str_replace_all str_extract str_extract_all str_detect
# #' @import rvest
# #' @import jsonlite
# #' @export
# #' @examples \dontrun{
# #' pbp_df <- pbp_data(data = df)
# #' }
# #### function returning all the pbp data for a game into one big data frame for the game
# ## data takes the raw list of data from the load_raw_data function
# pbp_data <- function(data, game_id = game_id) {
#
# # l <- length(data) - 2
# # c <- data[[l]]
# # c <- c %>% clean_names()
# # y <- sum(c$x1st) + 1
# # z <- y + sum(c$x2nd)
#
# lst <- list()
# # creating an empty list
#
# # so, since there's not a consistent format of which table in the list the period data is in
# # I have to have it loop through the number of rows in each of those tables
# # then we take each one that has at least 6 observations
# for (y in 1:length(data)) {
#
# z <- nrow(data[[y]])
# tb <- data.frame(y, z)
#
# lst[[y]] <- tb
#
# }
# # 6 observations bc the shootout format is 3 shots per team at minimum
# # since there are 7 lines in one of the boxscore tabs, we have to be careful
# # however, that is always one of the last tables so we can just take the first five
# tb <- dplyr::bind_rows(lst) %>%
# # LOOK AT
# # z > 7 runs easy, but it's possible for a shootout to be only 6 or 7 events
# # and since there's another table that is 7 (boxscore data) it causes errors when I left it
# # as >= 6 so I changed it for now to work
# dplyr::filter(.data$z > 7) %>%
# dplyr::mutate(order = dplyr::row_number()) %>%
# dplyr::filter(.data$order > 0, .data$order < 6)
#
# # tm <- data[[max(length(data)) - 1]] %>%
# # # taking the second to last table bc that is always shots (or goals? now I don't remember)
# # # either way, the away team is always on top so we can extract home/away from this
# # janitor::clean_names() %>%
# # dplyr::mutate(
# # order = dplyr::row_number(),
# # meta = dplyr::case_when(
# # .data$order == 1 ~ "away_team",
# # .data$order == 2 ~ "home_team",
# # TRUE ~ NA_character_)) %>%
# # dplyr::select(.data$shots, .data$meta) %>%
# # tidyr::pivot_wider(values_from = .data$shots, names_from = .data$meta)
#
# # for (a in 2016:2021) {
# #
# # b <- phf_schedule(season = a)
# #
# # lst[[a]] <- b
# #
# # }
# #
# # gms <- bind_rows(lst)
#
# # renaming the game_id variable bc otherwise it doesn't work
# g <- game_id
#
# # loading in pre-made meta data csv from GitHub bc that's quicker than running a loop through phf_schedule
# tm <- read.csv("https://raw.githubusercontent.com/benhowell71/whockeyR/main/phf_meta_data.csv") %>%
# dplyr::filter(game_id == g) %>%
# # dplyr::select(game_id, home_team, home_team_short,
# # away_team, away_team_short) %>%
# # mutate(home_team = paste0(home_team, home_team_short),
# # away_team = paste0(away_team, away_team_short)) %>%
# dplyr::select(home_team, away_team)
#
# # creating the pbp dataframes for regulation, OT, or shootout games
# if (nrow(tb) == 3) {
#
# e <- tb %>%
# dplyr::filter(.data$order == 1) %>%
# dplyr::pull(.data$y)
# f <- tb %>%
# dplyr::filter(.data$order == 2) %>%
# dplyr::pull(.data$y)
# g <- tb %>%
# dplyr::filter(.data$order == 3) %>%
# dplyr::pull(.data$y)
#
# first_period <- data[[e]]
# second_period <- data[[f]]
# third_period <- data[[g]]
#
# # second_period <- data[[2]]
# # third_period <- data[[4]]
#
# first_period <- process_period(data = first_period, period = 1)
#
# second_period <- process_period(data = second_period, period = 2)
#
# third_period <- process_period(data = third_period, period = 3)
#
# pbp <- dplyr::bind_rows(first_period,
# second_period,
# third_period)
#
# } else if (nrow(tb) == 4) {
#
# e <- tb %>%
# dplyr::filter(.data$order == 1) %>%
# dplyr::pull(.data$y)
# f <- tb %>%
# dplyr::filter(.data$order == 2) %>%
# dplyr::pull(.data$y)
# g <- tb %>%
# dplyr::filter(.data$order == 3) %>%
# dplyr::pull(.data$y)
# h <- tb %>%
# dplyr::filter(.data$order == 4) %>%
# dplyr::pull(.data$y)
#
# first_period <- data[[e]]
# second_period <- data[[f]]
# third_period <- data[[g]]
# fourth_period <- data[[h]]
#
# # second_period <- data[[2]]
# # third_period <- data[[4]]
#
# first_period <- process_period(data = first_period, period = 1)
#
# second_period <- process_period(data = second_period, period = 2)
#
# third_period <- process_period(data = third_period, period = 3)
#
# fourth_period <- process_period(data = fourth_period, period = 4)
#
# pbp <- dplyr::bind_rows(first_period,
# second_period,
# third_period,
# fourth_period)
#
# } else if (nrow(tb) >= 5) {
#
# e <- tb %>%
# dplyr::filter(.data$order == 1) %>%
# dplyr::pull(.data$y)
# f <- tb %>%
# dplyr::filter(.data$order == 2) %>%
# dplyr::pull(.data$y)
# g <- tb %>%
# dplyr::filter(.data$order == 3) %>%
# dplyr::pull(.data$y)
# h <- tb %>%
# dplyr::filter(.data$order == 4) %>%
# dplyr::pull(.data$y)
# i <- tb %>%
# dplyr::filter(.data$order == 5) %>%
# dplyr::pull(.data$y)
#
# first_period <- data[[e]]
# second_period <- data[[f]]
# third_period <- data[[g]]
# fourth_period <- data[[h]]
# shootout <- data[[i]]
#
# # second_period <- data[[2]]
# # third_period <- data[[4]]
#
# first_period <- process_period(data = first_period, period = 1)
#
# second_period <- process_period(data = second_period, period = 2)
#
# third_period <- process_period(data = third_period, period = 3)
#
# fourth_period <- process_period(data = fourth_period, period = 4)
#
# pbp <- dplyr::bind_rows(first_period,
# second_period,
# third_period,
# fourth_period)
#
# }
#
# pbp <- pbp %>%
# # replacing extraneous words to parse out player names
# dplyr::mutate(
# desc = .data$description,
# desc = stringr::str_replace_all(.data$desc, fill, ""),
# desc = stringr::str_replace_all(.data$desc, away, ""),
# desc = stringr::str_replace_all(.data$desc, goalie, ""),
# desc = stringr::str_replace_all(.data$desc, fo, ""),
# # replacing some basic stuff
# on_ice_situation = stringr::str_extract(.data$desc, ice),
# desc = stringr::str_replace_all(.data$desc, ice, ""),
# # cleaning the on-ice situation
# shot_type = stringr::str_extract(.data$desc, shots),
# desc = stringr::str_replace_all(.data$desc, shots, ""),
# shot_result = ifelse(stringr::str_detect(.data$event, "Goal") & .data$event != "Goalie", "made",
# stringr::str_extract(.data$desc, res)),
# desc = stringr::str_replace_all(.data$desc, res, ""),
# # cleaning up shot data to get shot type + the result of the shot
# penalty_type = stringr::str_extract(.data$desc, type),
# desc = stringr::str_replace_all(.data$desc, type, ""),
# penalty_called = stringr::str_extract(.data$desc, pen),
# desc = stringr::str_replace_all(.data$desc, pen, ""),
# penalty_length = stringr::str_extract(.data$desc,
# "[:digit:] mins"),
# desc = stringr::str_replace_all(.data$desc,
# "[:digit:] mins", ""),
# penalty = ifelse(!is.na(.data$penalty_type), 1, 0),
# # cleaning up penalty data
# score = stringr::str_extract(.data$desc, score_string),
# # score = ifelse(is.na(score), '0 - 0 T', score),
# # leader = str_extract(score, "[A-Z]+"),
# desc = stringr::str_replace_all(.data$desc, score_string, ""),
# desc = stringr::str_replace_all(str_trim(.data$desc, side = "both"),"#", ""))
# # cleaning up score data
# # first_player = str_trim(str_nth_non_numeric(.data$desc, n = 1)),
# # first_player = str_replace_all(first_player, fill, ""),
# # first_player = str_replace_all(first_player, pen, ""),
# # first_player = str_replace_all(first_player, shoot, ""),
# # first_player = str_trim(first_player),
# # first_number = str_nth_number(.data$desc, n = 1),
# # second_player = str_trim(str_nth_non_numeric(.data$desc, n = 2)),
# # second_number = str_nth_number(.data$desc, n = 2),
# # third_player = str_trim(str_nth_non_numeric(.data$desc, n = 3)),
# # third_number = str_nth_number(.data$desc, n = 3)) %>%
# # dplyr::filter(! is.na(time)) %>%
# # wrapping a separate function with suppressWarnings to prevent it from spitting out a 'NA' fill message
# suppressWarnings(pbp <- pbp %>%
# tidyr::separate(.data$time, into = c("minute", "second"),
# sep = ":", remove = FALSE))
#
# pbp <- pbp %>%
# dplyr::mutate(
# minute_start = as.numeric(.data$minute),
# second_start = as.numeric(.data$second),
# minute = ifelse(19 - .data$minute_start == 19 &
# 60 - .data$second_start == 60, 20,
# 19 - .data$minute_start),
# second = ifelse(60 - .data$second_start == 60, 0,
# 60 - .data$second_start),
# second = ifelse(.data$second < 10, paste0("0", .data$second),
# paste0(.data$second)),
# clock = paste0(.data$minute, ":", .data$second)) %>%
# dplyr::select(-.data$minute, -.data$second) %>%
# dplyr::mutate(event_no = dplyr::row_number())
#
# on_ice <- pbp %>%
# dplyr::filter(is.na(.data$time)) %>%
# dplyr::mutate(event_no = .data$event_no - 1) %>%
# dplyr::select(.data$event, .data$team, .data$event_no, .data$period_id) %>%
# # dplyr::mutate(
# # team = stringr::str_replace_all(team, "#", ""),
# # offensive_player_one = str_trim(side = c("both"), str_nth_non_numeric(.data$team, n = 1)),
# # offensive_number_one = str_trim(side = c("both"), str_nth_number(.data$team, n = 1)),
# # offensive_player_two = str_trim(side = c("both"), str_nth_non_numeric(.data$team, n = 2)),
# # offensive_number_two = str_trim(side = c("both"), str_nth_number(.data$team, n = 2)),
# # offensive_player_three = str_trim(side = c("both"), str_nth_non_numeric(.data$team, n = 3)),
# # offensive_number_three = str_trim(side = c("both"), str_nth_number(.data$team, n = 3)),
# # offensive_player_four = str_trim(side = c("both"), str_nth_non_numeric(.data$team, n = 4)),
# # offensive_number_four = str_trim(side = c("both"), str_nth_number(.data$team, n = 4)),
# # offensive_player_five = str_trim(side = c("both"), str_nth_non_numeric(.data$team, n = 5)),
# # offensive_number_five = str_trim(side = c("both"), str_nth_number(.data$team, n = 5))
# # ) %>%
# # extracting player name and number from the description for who is on the ice when a goal was scored
# # the order (player_one vs player_five) doesn't mean anything
# # but with the way str_extract/replace works, we're just pulling the first instance of each number
# # then replacing it with a comma (unless it's the first number bc that doesn't need a comma before that name)
# dplyr::mutate(team = stringr::str_replace_all(team, abbreviations, ""),
# team = stringr::str_replace_all(team, ne, ""),
# number_one = stringr::str_trim(stringr::str_extract(team, "#[0-9]+")),
# team = stringr::str_replace(team, number_one, ""),
# number_two = stringr::str_trim(stringr::str_extract(team, "#[0-9]+")),
# team = stringr::str_replace(team, number_two, ","),
# number_three = stringr::str_trim(stringr::str_extract(team, "#[0-9]+")),
# team = stringr::str_replace(team, number_three, ","),
# number_four = stringr::str_trim(stringr::str_extract(team, "#[0-9]+")),
# team = stringr::str_replace(team, number_four, ","),
# number_five = stringr::str_trim(stringr::str_extract(team, "#[0-9]+")),
# team = stringr::str_replace(team, number_five, ","),
# # there are instances where a team pulls its goalie and has 6 skaters so this is designed to search for that case
# number_six = stringr::str_trim(stringr::str_extract(team, "#[0-9]+")),
# # in the instance where there is NOT a 6th skater, doing a raw str_replace creates a NA and removes the player names
# # so this ifelse statement looks to see if there was a 6th player number and is so, then replace that number with a comma
# # otherwise it just pastes the description there without touching it
# team = ifelse(! is.na(number_six), stringr::str_replace(team, number_six, ","), team)) %>%
# # using the comma separators, separate the string into offensive_player one through six
# separate(team, into = c("offensive_player_one", "offensive_player_two",
# "offensive_player_three", "offensive_player_four",
# "offensive_player_five", "offensive_player_six"),
# sep = ",", remove = TRUE) %>%
# # trimming the player names to remove whitespace and make them consistent in formatting
# mutate(
# offensive_player_one = stringr::str_trim(offensive_player_one),
# offensive_player_two = stringr::str_trim(offensive_player_two),
# offensive_player_three = stringr::str_trim(offensive_player_three),
# offensive_player_four = stringr::str_trim(offensive_player_four),
# offensive_player_five = stringr::str_trim(offensive_player_five),
# offensive_player_six = stringr::str_trim(offensive_player_six)
# # defensive_player_two = stringr::str_trim(defensive_player_two),
# # defensive_player_three = stringr::str_trim(defensive_player_three),
# # defensive_player_four = stringr::str_trim(defensive_player_four),
# # defensive_player_five = stringr::str_trim(defensive_player_five)
# ) %>%
# # de-selecting the unimportant columns
# dplyr::select(-c(event, starts_with("number_")))
#
# pbp <- pbp %>%
# dplyr::left_join(on_ice, by = c("period_id", "event_no")) %>%
# dplyr::mutate(
# leader = stringr::str_extract(.data$score, "[A-Z]+"),
# scr = stringr::str_replace_all(.data$score, "[A-Z]+", "")) %>%
# tidyr::separate(
# .data$scr,
# into = c("away_goals", "home_goals"),
# sep = " - ",
# remove = FALSE) %>%
# dplyr::select(-.data$scr) %>%
# tidyr::fill(.data$score) %>%
# tidyr::fill(.data$leader) %>%
# tidyr::fill(.data$away_goals) %>%
# tidyr::fill(.data$home_goals) %>%
# dplyr::mutate(
# leader = ifelse(is.na(.data$leader), 'T', .data$leader),
# away_goals = ifelse(is.na(.data$away_goals), 0, .data$away_goals),
# home_goals = ifelse(is.na(.data$home_goals), 0, .data$home_goals),
# score = ifelse(is.na(.data$score), '0 - 0 T', .data$score)) %>%
# dplyr::mutate(
# sec_from_start = (60 * .data$minute_start) + .data$second_start,
# # adding time to the seconds_from_start variable to account for what period we're in
# sec_from_start = dplyr::case_when(
# .data$period_id == 2 ~ .data$sec_from_start + 1200,
# .data$period_id == 3 ~ .data$sec_from_start + 2400,
# .data$period_id == 4 ~ .data$sec_from_start + 3600,
# .data$period_id == 5 ~ .data$sec_from_start + 4800,
# TRUE ~ .data$sec_from_start),
# # who long, in seconds, will the penalty and power play opportunity extend?
# power_play_seconds = ifelse(!is.na(.data$penalty_length),
# as.numeric(str_extract(.data$penalty_length, '[0-9]')) * 60,
# NA_real_),
# start_power_play = ifelse(.data$penalty == 1, .data$sec_from_start, NA_real_),
# end_power_play = ifelse(.data$penalty == 1, .data$start_power_play + .data$power_play_seconds, NA_real_)) %>%
# tidyr::fill(.data$start_power_play) %>%
# tidyr::fill(.data$end_power_play) %>%
# # ID'ing PP situations by whether the timestamp is within the time passed from when the penalty was given
# # any situation that isn't special, i.e. as a PP or Empty Net get replaced by Even Strength
# dplyr::mutate(
# on_ice_situation = ifelse((.data$sec_from_start >= .data$start_power_play &
# .data$sec_from_start <= .data$end_power_play) |
# (.data$on_ice_situation == "Power Play"), "Power Play",
# .data$on_ice_situation),
# on_ice_situation = replace_na(.data$on_ice_situation, "Even Strength"))
#
# if (nrow(tb) >= 5) {
# # adding shootout data to the regulation/OT pbp if there was a shootout
# shootout <- process_shootout(data = shootout)
#
# pbp <- dplyr::bind_rows(pbp, shootout)
#
# }
#
# pbp <- pbp %>%
# dplyr::left_join(tm, by = character())
#
# pbp <- pbp %>%
# # taking the players and numbers involved in a play
# dplyr::mutate(desc2 = stringr::str_replace_all(description, away, ""),
# desc2 = stringr::str_replace_all(desc2, fill, ""),
# desc2 = stringr::str_replace_all(desc2, goalie, ""),
# desc2 = stringr::str_replace_all(desc2, fo, ""),
# desc2 = stringr::str_replace_all(desc2, ice, ""),
# desc2 = stringr::str_replace_all(desc2, shots, ""),
# desc2 = stringr::str_replace_all(desc2, res, ""),
# desc2 = stringr::str_replace_all(desc2, pen, ""),
# desc2 = stringr::str_replace_all(desc2, type, ""),
# desc2 = stringr::str_replace_all(desc2, shoot, ""),
# desc2 = stringr::str_replace_all(desc2, score_string, ""),
# desc2 = stringr::str_replace_all(desc2, lgh, ""),
# first_number = stringr::str_extract(desc2, "#[0-9]+"),
# desc2 = stringr::str_replace(desc2, first_number, ""),
# # don't replace first number with a comma because there is no name in front of the first number
# second_number = stringr::str_extract(desc2, "#[0-9]+"),
# # since there isn't always a second or third player involved in a play, using an ifelse statement
# # to figure out if there was a player, then replacing them if so
# desc2 = ifelse(! is.na(second_number), stringr::str_replace(desc2, second_number, ","), desc2),
# third_number = stringr::str_trim(stringr::str_extract(desc2, "#[0-9]+")),
# desc2 = ifelse(! is.na(third_number), stringr::str_replace(desc2, third_number, ","), desc2),
# first_number = stringr::str_trim(stringr::str_replace_all(first_number, "#", "")),
# second_number = stringr::str_trim(stringr::str_replace_all(second_number, "#", "")),
# third_number = stringr::str_trim(stringr::str_replace_all(third_number, "#", "")))
#
# # running the player name separation within suppressWarnings to avoid getting 'NA, expected 3 arguments'
# # for plays with just one or two players involved
# suppressWarnings(
# pbp <- pbp %>%
# tidyr::separate(col = desc2, into = c("first_player", "second_player", "third_player"),
# sep = ",", remove = TRUE))
#
# # trim whitespace around player names
# pbp <- pbp %>%
# dplyr::mutate(first_player = stringr::str_trim(first_player),
# second_player = stringr::str_trim(second_player),
# third_player = stringr::str_trim(third_player))
#
# gl <- pbp %>%
# dplyr::filter(.data$event == "Goalie") %>%
# # filter(str_detect(description, "Starting|Returned"))
# dplyr::select(
# .data$home_team, .data$away_team, .data$team, .data$description,
# .data$first_player, .data$event, .data$sec_from_start) %>%
# dplyr::mutate(
# goalie_change = str_extract(.data$description, "Starting|Returned|Pulled"),
# goalie = ifelse(
# str_detect(.data$team, .data$away_team), "away_goalie",
# ifelse(
# str_detect(.data$team, .data$home_team), "home_goalie", NA
# )
# ),
# first_player = ifelse(.data$goalie_change == "Pulled", "None", .data$first_player)
# ) %>%
# dplyr::select(.data$first_player,
# .data$sec_from_start,
# .data$goalie_change,
# .data$goalie) %>%
# tidyr::pivot_wider(
# names_from = .data$goalie,
# values_from = .data$first_player)
#
# pbp <- pbp %>%
# dplyr::left_join(gl, by = c("sec_from_start")) %>%
# tidyr::fill(.data$home_goalie) %>%
# tidyr::fill(.data$away_goalie) %>%
# dplyr::filter(.data$event != "Goalie") %>%
# dplyr::mutate(
# home_goalie = ifelse(.data$home_goalie == "None", NA_character_, .data$home_goalie),
# away_goalie = ifelse(.data$away_goalie == "None", NA_character_, .data$away_goalie),
# goalie_involved = dplyr::case_when(
# .data$event %in% c("Goal", "PP Goal", "Shot", "Shot BLK") &
# str_detect(.data$team, .data$home_team) ~ .data$away_goalie,
# .data$event %in% c("Goal", "PP Goal", "Shot", "Shot BLK") &
# str_detect(.data$team, .data$away_team) ~ .data$home_goalie,
# TRUE ~ NA_character_),
# time_elapsed = .data$time,
# time_remaining = .data$clock
# )
#
# return(pbp)
#
# }
#
# #' @title load_pbp
# #' @description load_pbp: loads all the play-by-play data for a game into one data frame through just one function
# #'
# #' @param game_id The unique ID code for the game that you are interested in viewing the data for
# #' @import rvest
# #' @export
# #' @examples
# #' \dontrun{
# #' first_period <- process_period(data = df[[1]], period = 1)
# #' }
# load_pbp <- function(game_id = 268078, format = "clean") {
#
# # load raw data in from the api
# df <- phf_game_data(game_id = game_id)
# # load_raw_data(game_id = game_id)
#
# # transform raw data into a pbp dataframe
# pbp <- pbp_data(data = df, game_id = game_id)
#
# #re-initializing the game_id variable so that it doesn't freak tf out
# x <- game_id
#
# # some last minute stuff
# pbp <- pbp %>%
# dplyr::filter(!is.na(.data$description)) %>%
# dplyr::mutate(
# game_id = x,
# event_no = dplyr::row_number(),
# power_play_seconds = ifelse(is.na(power_play_seconds), 0,
# power_play_seconds))
#
# # figuring out how many skaters are on the ice at a single time
# away_state_changes <- pbp %>%
# filter((event == "PP Goal" & str_detect(team, home_team)) |
# (event == "Penalty" & str_detect(team, away_team))) %>%
# select(event,sec_from_start,power_play_seconds) %>%
# mutate(event = ifelse(event == "Penalty", 1, 2),
# prev.event = lag(event),
# prev.time = lag(sec_from_start),
# prev.length = lag(power_play_seconds))
#
#
# away_pen_mat <- apply(away_state_changes,
# 1,
# FUN = function(x) {
# #Creates a -1 for duration of penalty and 0s surrounding it
# if(x[1] == 1 & x[2]+x[3]*60 < (max(pbp$period_id, na.rm = TRUE)*1200-1)){
# c( rep( 0, length( 0:x[2] )),
# rep( -1, x[3]*60),
# rep(0, length((x[2]+x[3]*60 + 1):(max(pbp$period_id, na.rm = TRUE)*1200-1)))
# )
# #Creates a -1 for duration of penalty and 0s before (for end of game penalties)
# } else if(x[1] == 1 & x[2]+x[3]*60 >= (max(pbp$period_id, na.rm = TRUE)*1200-1)) {
# c( rep( 0, length( 0:x[2] )),
# rep(-1, max(pbp$period_id, na.rm = TRUE)*1200-1-x[2] )
# )
# #Creates a +1 from time power play goal is scored to end of penalty to handle skater coming back on
# } else if( x[1] == 2 & (x[2] %in% ifelse(!is.na(x[5]) & !is.na(x[6]) & x[2] != x[5], x[5]:(x[5]+x[6]*60),-1 )) ) {
# c( rep( 0, length( 0:(x[2]) )),
# rep( 1, length( (x[2]+1):(x[6]*60-(x[2]-x[5])))),
# rep(0, length((x[6]*60-(x[2]-x[5])):(max(pbp$period_id, na.rm = TRUE)*1200-1)))
# )
# # Creates all zeros if event doesnt effect strength
# } else {
# rep(0, length(0:(max(pbp$period_id, na.rm = TRUE)*1200-1)))
# }
# })
#
# #creates vector for skaters
# away_skaters <- 5 + apply(away_pen_mat, 1, sum)
#
# away_skaters <- as.data.frame(away_skaters) %>%
# rownames_to_column("sec_from_start")%>%
# mutate(sec_from_start = as.numeric(sec_from_start))
#
# home_state_changes <- pbp %>%
# filter((event == "PP Goal" & str_detect(team, away_team)) |
# (event == "Penalty" & str_detect(team, home_team))) %>%
# select(event,sec_from_start,power_play_seconds) %>%
# mutate(event = ifelse(event == "Penalty",1,2),
# prev.event = lag(event),
# prev.time = lag(sec_from_start),
# prev.length = lag(power_play_seconds))
#
#
# home_pen_mat <- apply(home_state_changes,
# 1,
# FUN = function(x) {
# #Creates a -1 for duration of penalty and 0s surrounding it
# if(x[1] == 1 & (x[2] + x[3] * 60) < (max(pbp$period_id, na.rm = TRUE) * 1200-1)){
# c( rep( 0, length( 0:x[2] )),
# rep( -1, x[3]*60),
# rep(0, length((x[2]+x[3]*60 + 1):(max(pbp$period_id, na.rm = TRUE)*1200-1)))
# )
# #Creates a -1 for duration of penalty and 0s before (for end of game penalties)
# } else if(x[1] == 1 & (x[2]+x[3]*60) >= (max(pbp$period_id, na.rm = TRUE)*1200-1)) {
# c( rep( 0, length( 0:x[2] )),
# rep(-1, max(pbp$period_id, na.rm = TRUE)*1200-1-x[2] )
# )
# #Creates a +1 from time power play goal is scored to end of penalty to handle skater coming back on
# } else if( x[1] == 2 & (x[2] %in% ifelse(!is.na(x[5]) & !is.na(x[6]) & x[2] != x[5], x[5]:(x[5]+x[6]*60),-1 )) ) {
# c( rep( 0, length( 0:(x[2]) )),
# rep( 1, length( (x[2]+1):(x[6]*60-(x[2]-x[5])))),
# rep(0, length((x[6]*60-(x[2]-x[5])):(max(pbp$period_id, na.rm = TRUE)*1200-1)))
# )
# # Creates all zeros if event doesn't effect strength
# } else {
# rep(0, length(0:(max(pbp$period_id)*1200-1)))
# }
# })
#
# #creates vector for skaters
# home_skaters <- 5 + apply(home_pen_mat, 1, sum)
#
# home_skaters <- as.data.frame(home_skaters) %>%
# rownames_to_column("sec_from_start")%>%
# mutate(sec_from_start = as.numeric(sec_from_start))
#
# suppressMessages(pbp <- left_join(pbp, home_skaters))
# suppressMessages(pbp <- left_join(pbp, away_skaters))
#
# pbp <- pbp %>%
# dplyr::mutate(
# first_player = stringr::str_trim(stringr::str_replace(first_player,
# "missed attempt|scores", "")),
# second_player = stringr::str_trim(stringr::str_replace(second_player,
# "Shootout|Shoout|shoout|shootout", ""))
# )
#
# if (format == "clean") {
#
# pbp <- pbp %>%
# dplyr::select(
# .data$game_id,
# .data$home_team,
# .data$away_team,
# .data$period_id,
# .data$event_no,
# .data$description,
# .data$time_remaining,
# .data$sec_from_start,
# .data$on_ice_situation,
# .data$home_skaters,
# .data$away_skaters,
# .data$home_goals, .data$away_goals, .data$leader,
# .data$team,
# .data$event,
# .data$first_player, .data$first_number,
# .data$second_player, .data$second_number,
# .data$third_player, .data$third_number,
# .data$shot_type, .data$shot_result, .data$goalie_involved,
# .data$penalty,
# .data$penalty_length,
# .data$.data$penalty_type,
# .data$penalty_called,
# .data$offensive_player_one,
# .data$offensive_player_two,
# .data$offensive_player_three,
# .data$offensive_player_four,
# .data$offensive_player_five,
# .data$offensive_player_six,
# .data$home_goalie,
# .data$away_goalie)
#
# }
#
# return(pbp)
#
# }
#
# #### Boxscore Functions ####
#
# # create an empty boxscore data frame for binding rows with so that every boxscore has the same size
# boxscore <- data.frame(
# team = character(),
# successful_power_play = numeric(),
# power_play_opportunities = numeric(),
# power_play_percent = numeric(),
# penalty_minutes = numeric(),
# faceoff_percent = numeric(),
# blocked_opponent_shots = numeric(),
# takeaways = numeric(),
# giveaways = numeric(),
# first_shots = integer(),
# second_shots = integer(),
# third_shots = integer(),
# overtime_shots = integer(),
# shootout_shots = integer(),
# total_shots = integer(),
# first_scoring = integer(),
# second_scoring = integer(),
# third_scoring = integer(),
# overtime_scoring = integer(),
# shootout_scoring = character(),
# total_scoring = integer(),
# winner = character(),
# game_id = numeric()
# )
#
# #' @title process_boxscore
# #' @description process_boxscore: the code for processing box score data into a format that makes sense
# #'
# #' @param data the raw data from the game that you're interested in
# #' @importFrom janitor clean_names
# #' @importFrom stringr str_replace
# #' @importFrom tidyr separate pivot_longer pivot_wider
# #' @import dplyr
# #' @export
# #' @examples
# #' \dontrun{
# #' boxscore <- process_boxscore(data = df[[1]])
# #' }
# process_boxscore <- function(data) {
#
# df <- data[[max(length(data))]]
# score <- data[[max(length(data)) - 2]]
# shot <- data[[max(length(data)) - 1]]
#
# if (ncol(score) == 5) {
#
# score <- score %>%
# janitor::clean_names() %>%
# dplyr::rename("team" = "scoring",
# "first_scoring" = "x1st",
# "second_scoring" = "x2nd",
# "third_scoring" = "x3rd",
# "total_scoring" = "t")
#
# } else if (ncol(score) == 6) {
#
# score <- score %>%
# janitor::clean_names() %>%
# dplyr::rename("team" = "scoring",
# "first_scoring" = "x1st",
# "second_scoring" = "x2nd",
# "third_scoring" = "x3rd",
# "overtime_scoring" = "ot",
# "total_scoring" = "t")
#
# } else if (ncol(score) == 7) {
#
# score <- score %>%
# janitor::clean_names() %>%
# dplyr::rename("team" = "scoring",
# "first_scoring" = "x1st",
# "second_scoring" = "x2nd",
# "third_scoring" = "x3rd",
# "overtime_scoring" = "ot",
# "shootout_scoring" = "so",
# "total_scoring" = "t") %>%
# dplyr::mutate(
# shootout_scoring = stringr::str_replace(shootout_scoring, "[0-9] ", ""),
# shootout_scoring = stringr::str_replace(shootout_scoring, "\\(", ""),
# shootout_scoring = stringr::str_replace(shootout_scoring, "\\)", ""),
# shootout_rep = stringr::str_replace(shootout_scoring, " - ", ",")) %>%
# dplyr::select(-c(shootout_scoring)) %>%
# tidyr::separate(shootout_rep, into = c("shootout_scoring", "shootout_shots"),
# sep = ",", remove = TRUE)
#
# }
#
# if (ncol(shot) == 5) {
#
# shot <- shot %>%
# janitor::clean_names() %>%
# dplyr::rename(
# "team" = "shots",
# "first_shots" = "x1st",
# "second_shots" = "x2nd",
# "third_shots" = "x3rd",
# "total_shots" = "t")
#
# } else if (ncol(shot) != 5) {
#
# shot <- shot %>%
# janitor::clean_names() %>%
# dplyr::rename(
# "team" = "shots",
# "first_shots" = "x1st",
# "second_shots" = "x2nd",
# "third_shots" = "x3rd",
# "overtime_shots" = "ot",
# "total_shots" = "t")
#
# }
#
# df <- df %>%
# janitor::clean_names() %>%
# tidyr::pivot_longer(cols = 2:3) %>%
# tidyr::pivot_wider(names_from = team_stats) %>%
# janitor::clean_names() %>%
# tidyr::separate(
# power_plays,
# into = c("successful_power_play", "power_play_opportunities"),
# sep = " / ") %>%
# dplyr::mutate_at(
# vars(successful_power_play,
# power_play_opportunities,
# power_play_percent,
# penalty_minutes,
# faceoff_percent,
# blocked_opponent_shots,
# takeaways,
# giveaways), as.numeric) %>%
# dplyr::rename("team" = "name")
#
# s <- shot %>%
# dplyr::left_join(score, by = c("team")) %>%
# dplyr::mutate(team = tolower(team))
#
# df <- df %>%
# dplyr::left_join(s, by = c("team"))
#
# df <- dplyr::bind_rows(df, boxscore)
#
# df <- df %>%
# dplyr::mutate(
# winner = ifelse(
# .data$total_scoring == max(.data$total_scoring, na.rm = TRUE), "Yes", "No"))
#
# return(df)
#
# }
#
# #' @title load_boxscore
# #' @description load_boxscore: loads the boxscore and shot/score data for a game into one data frame through just one function
# #'
# #' @param game_id The unique ID code for the game that you are interested in viewing the data for
# #' @import rvest
# #' @import janitor
# #' @import httr
# #' @import stringr
# #' @export
# #' @examples
# #' \dontrun{
# #' boxscore <- load_boxscore(game_id = 268078)
# #' }
# load_boxscore <- function(game_id = 268078) {
#
# y <- game_id
#
# # load raw data from API
# df <- load_raw_data(game_id = game_id)
#
# # turn raw data into a boxscore format
# df <- process_boxscore(data = df)
#
# df <- df %>%
# dplyr::mutate(game_id = y) %>%
# dplyr::select(
# .data$team, .data$game_id, .data$winner, .data$total_scoring,
# .data$first_scoring, .data$second_scoring, .data$third_scoring,
# .data$overtime_scoring,
# .data$shootout_scoring,
# .data$total_shots, .data$first_shots,
# .data$second_shots, .data$third_shots,
# .data$overtime_shots, .data$shootout_shots,
# .data$blocked_opponent_shots,
# .data$successful_power_play,
# .data$power_play_opportunities,
# .data$power_play_percent,
# .data$faceoff_percent,
# .data$penalty_minutes,
# .data$takeaways,
# .data$giveaways)
#
# return(df)
#
# }
#
# #' @title load_game
# #' @description load_game: loads boxscore/pbp data into a list to load both at once for a given game
# #'
# #' @param game_id The unique ID code for the game that you are interested in viewing the data for
# #' @export
# #' @examples
# #' \dontrun{
# #' game_data <- load_game(game_id = 268078)
# #' }
# load_game <- function(game_id = 268078) {
#
# # returns both boxscore and pbp data in a single list
#
# box <- load_boxscore(game_id = game_id)
#
# pbp <- load_pbp(game_id = game_id)
#
# game <- list(box, pbp)
#
# return(game)
#
# }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.