# library(tidyverse)
# library(stringr)
# library(janitor)
#
# source('R/pbp_functions.R')
# source('R/phf_schedule.R')
# source('R/utils.R')
#
# x <- 379254
# y <- 268123
#
# data <- load_pbp(game_id = y)
#
# # so <- data %>%
# # filter(on_ice_situation == "shootout") %>%
# # mutate(
# # first_player = stringr::str_trim(stringr::str_replace(first_player,
# # "missed attempt|scores", "")),
# # second_player = stringr::str_trim(stringr::str_replace(second_player,
# # "Shootout|Shoout|shoout|shootout", ""))
# # )
#
# # data <- load_raw_data(game_id = y)
#
# # score <- score %>%
# # janitor::clean_names() %>%
# # dplyr::rename("team" = "scoring",
# # "first_scoring" = "x1st",
# # "second_scoring" = "x2nd",
# # "third_scoring" = "x3rd",
# # "overtime_scoring" = "ot",
# # "shootout_scoring" = "so",
# # "total_scoring" = "t")
# #
# # score %>%
# # dplyr::mutate(
# # shootout_scoring = str_replace(shootout_scoring, "[0-9] ", ""),
# # shootout_scoring = str_replace(shootout_scoring, "\\(", ""),
# # shootout_scoring = str_replace(shootout_scoring, "\\)", ""),
# # shootout_rep = str_replace(shootout_scoring, " - ", ",")) %>%
# # dplyr::select(-c(shootout_scoring)) %>%
# # tidyr::separate(shootout_rep, into = c("shootout_scoring", "shootout_shots"),
# # sep = ",", remove = TRUE)
# #
# # score_string <- "[:digit:] - [:digit:] [A-Z]+|[:digit:] - [:digit:]"
# # shoot <- "missed attempt against|scores against|Shootout"
# # all <- "[:digit:] - [:digit:] [A-Z]+|[:digit:] - [:digit:]|missed attempt against|scores against|Shootout"
# #
# # as <- shootout %>%
# # janitor::clean_names() %>%
# # # creating variables, cleaning stuff for shootouts specifically
# # # since there's a lot less variation in what can happen
# # # it's easier to do the cleaning so it's in its own function
# # dplyr::mutate(
# # event = "Shootout",
# # on_ice_situation = "shootout",
# # shot_type = "shootout",
# # shot_result = tolower(.data$x),
# # period_id = 5,
# # event_no = dplyr::row_number(),
# # description = .data$play,
# # desc = stringr::str_replace_all(.data$play, "#", ""),
# # desc2 = stringr::str_replace_all(.data$description, all, ""),
# # first_number = stringr::str_extract(.data$desc2, "#[0-9]+"),
# # desc2 = stringr::str_replace(.data$desc2, first_number, ""),
# # second_number = stringr::str_extract(.data$desc2, "#[0-9]+"),
# # desc2 = stringr::str_replace(.data$desc2, second_number, ","),
# # first_number = stringr::str_trim(stringr::str_replace(.data$first_number, "#", "")),
# # second_number = stringr::str_trim(stringr::str_replace(.data$second_number, "#", ""))) %>%
# # tidyr::separate(desc2, into = c("first_player", "second_player"),
# # sep = ",") %>%
# # dplyr::mutate(first_player = stringr::str_trim(first_player),
# # second_player = stringr::str_trim(second_player))
# #
# # data <- data %>%
# # janitor::clean_names() %>%
# # # creating variables, cleaning stuff for shootouts specifically
# # # since there's a lot less variation in what can happen
# # # it's easier to do the cleaning so it's in its own function
# # dplyr::mutate(
# # event = "Shootout",
# # on_ice_situation = "shootout",
# # shot_type = "shootout",
# # shot_result = tolower(.data$x),
# # period_id = 5,
# # event_no = dplyr::row_number(),
# # description = .data$play,
# # desc = stringr::str_replace_all(.data$play, "#", ""),
# # # first_number = str_nth_number(.data$desc, 1),
# # # second_number = str_nth_number(.data$desc, 2),
# # desc = str_replace_all(.data$desc, shoot, ""),
# # score = str_extract(.data$desc, score_string),
# # desc = str_replace_all(.data$desc, score_string, ""),
# # desc = str_replace_all(str_trim(.data$desc, side = "both"),"#", ""),
# # # first_player = str_nth_non_numeric(.data$desc, n = 1),
# # # second_player = str_nth_non_numeric(.data$desc, n = 2),
# # leader = str_extract(.data$score, "[A-Z]+"),
# # scr = str_replace_all(.data$score, "[A-Z]+", "")) %>%
# # dplyr::select(-.data$play) %>%
# # tidyr::separate(
# # .data$scr,
# # into = c("away_goals", "home_goals"),
# # sep = " - ", remove = FALSE) %>%
# # dplyr::select(-.data$scr, -.data$x) %>%
# # dplyr::mutate(
# # leader = ifelse(is.na(.data$leader), 'T', .data$leader),
# # away_goals = ifelse(is.na(.data$away_goals), 0, .data$away_goals),
# # home_goals = ifelse(is.na(.data$home_goals), 0, .data$home_goals),
# # score = ifelse(is.na(.data$score), '0 - 0 T', .data$score))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.