generalize_tmle: TMLE for estimating TATE

Description Usage Arguments Value

View source: R/generalize_tmle.R

Description

TMLE for estimating TATE

Usage

1
2
3
4
5
6
7
8
9
generalize_tmle(
  outcome,
  treatment,
  trial,
  selection_covariates,
  data,
  is_data_disjoint = TRUE,
  seed
)

Arguments

outcome

variable name denoting outcome

treatment

variable name denoting binary treatment assignment (ok if only available in trial, not population)

trial

variable name denoting binary trial participation (1 = trial participant, 0 = not trial participant)

selection_covariates

vector of covariate names in data set that predict trial participation

data

data frame comprised of "stacked" trial and target population data

is_data_disjoint

logical. If TRUE, then trial and population data are considered independent.

seed

numeric. By default, the seed is set to 13783, otherwise can be specified (such as for simulation purposes).

Value

generalize_tmle returns a list of the TATE estimate, standard error, and 95% CI bounds


benjamin-ackerman/generalizeR documentation built on Oct. 7, 2020, 4:38 a.m.