Kendall.correlation.estimator: Estimate the scale matrix of a semiparametric elliptical...

Description Usage Arguments Details Value Examples

View source: R/covariance_estimators.R

Description

Estimate the correlation matrix of a semiparametric elliptical copula using a modified Kendall rank correlation matrix

Usage

1

Arguments

X

An n x p data matrix.

Details

Given X, an n x p data matrix, let K be its Kendall correlation matrix. This function first computes Chat <- sin(0.5*pi*K) and projects it onto the space of correlation matrices (in Frobenius norm) using the nearPD function of the Matrix package

Value

A p x p correlation matrix.

Examples

1
2
3
4
5
6
set.seed(0)
# Data from a mixture semiparametric elliptical copula (Cauchy) / multivariate normal
sim.data <- generate.latent.ggm.data(n=2000, p=100, h=5, outlier.fraction = 0.05,
                                    sparsity = 0.02, sparsity.latent = 0.7)
X <- sim.data$obs.data;
Sigma.Kendall <- Kendall.correlation.estimator(X)

benjaminfrot/lrpsadmm documentation built on Oct. 19, 2019, 8:13 a.m.