Description Usage Arguments Details Value Examples
View source: R/covariance_estimators.R
Estimate the correlation matrix of a semiparametric elliptical copula using a modified Kendall rank correlation matrix
1 |
X |
An n x p data matrix. |
Given X, an n x p data matrix, let K be its Kendall correlation matrix.
This function first computes Chat <- sin(0.5*pi*K)
and projects it onto the
space of correlation matrices (in Frobenius norm) using the nearPD
function
of the Matrix
package
A p x p correlation matrix.
1 2 3 4 5 6 | set.seed(0)
# Data from a mixture semiparametric elliptical copula (Cauchy) / multivariate normal
sim.data <- generate.latent.ggm.data(n=2000, p=100, h=5, outlier.fraction = 0.05,
sparsity = 0.02, sparsity.latent = 0.7)
X <- sim.data$obs.data;
Sigma.Kendall <- Kendall.correlation.estimator(X)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.