ppc_km_nada: Generate ECDFs for posterior predictive checks with...

View source: R/ppc_km_nada.R

ppc_km_nadaR Documentation

Generate ECDFs for posterior predictive checks with left-censored data

Description

Generate ECDFs for posterior predictive checks with left-censored data

Usage

ppc_km_nada(input, object, draw_ids = 1:200, car1 = TRUE, seed, ...)

Arguments

input

A dataframe for which to generate model predictions.

object

A brms model object.

draw_ids

Draw IDs from model object.

car1

Logical. Add CAR(1) errors?

seed

Set a random seed.

...

Arguments passed on to add_pred_draws_car1().

Value

A dataframe containing ECDFs generated by NADA::cenfit() for observations and model predictions.

Examples

library("brms")
seed <- 1
data <- read.csv(paste0(system.file("extdata", package = "bgamcar1"), "/data.csv"))
fit <- fit_stan_model(
   paste0(system.file("extdata", package = "bgamcar1"), "/test"),
   seed,
   bf(y | cens(ycens, y2 = y2) ~ 1),
   data,
   prior(normal(0, 1), class = Intercept),
   car1 = FALSE,
   save_warmup = FALSE,
   chains = 3
 )
 ppc_km_nada(data, fit, draw_ids = 34, seed = seed, car1 = FALSE)

bentrueman/bgamcar1 documentation built on July 6, 2024, 11:16 p.m.