# Copyright 2023 Robert Carnell
# Common models between importance and tornado tests
survreg_model <- survival::survreg(survival::Surv(futime, fustat) ~ ecog.ps*rx + age,
survival::ovarian,
dist = "weibull")
set.seed(1923)
w <- sample(1:7, size = nrow(survival::ovarian), replace = TRUE)
survreg_model_weighted <- survival::survreg(survival::Surv(futime, fustat) ~ ecog.ps*rx + age,
survival::ovarian,
dist = "weibull", weights = w)
base_glm_model <- glm(mpg ~ cyl*wt*hp + gear + carb, data = mtcars, family = gaussian)
base_glm_binomial_model <- glm(vs ~ wt + disp + gear, data = mtcars, family = binomial(link = "logit"))
weigthed_glm_model <- glm(mpg ~ cyl*wt*hp, data = mtcars, family = gaussian,
weights = rep(1:2, nrow(mtcars) / 2))
weighted_glm_binomial_model <- glm(vs ~ wt + disp + cyl, data = mtcars,
family = binomial(link = "logit"),
weights = rep(1:2, nrow(mtcars) / 2))
if (requireNamespace("glmnet", quietly = TRUE)) {
glmnet_form <- formula(mpg ~ cyl*wt*hp)
glmnet_mf <- model.frame(glmnet_form, data = mtcars)
glmnet_mm <- model.matrix(glmnet_mf, glmnet_mf)
glmnet_model <- glmnet::cv.glmnet(x = glmnet_mm, y = mtcars$mpg, family = "gaussian")
glmnet_model_weighted <- glmnet::cv.glmnet(x = glmnet_mm, y = mtcars$mpg,
family = "gaussian", weights = rep(1:2, nrow(mtcars) / 2))
}
n_permutation_tests <- 10
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.