context("test-importance_glm")
test_that("importance glm works", {
# Interactions
gtestreduced <- glm(mpg ~ 1, data = mtcars, family = gaussian)
imp1 <- importance(base_glm_model, gtestreduced)
expect_equal(class(imp1), "importance_plot")
plot(imp1)
# no Interactions
gtest <- glm(mpg ~ cyl + wt + hp + gear + carb, data = mtcars, family = gaussian)
gtestreduced <- glm(mpg ~ 1, data = mtcars, family = gaussian)
imp2 <- importance(gtest, gtestreduced)
expect_equal(class(imp2), "importance_plot")
plot(imp2)
# binomial
gtestreduced <- glm(vs ~ 1, data = mtcars, family = binomial(link = "logit"))
imp3 <- importance(base_glm_binomial_model, gtestreduced)
expect_equal(class(imp3), "importance_plot")
plot(imp3)
# Poisson
gtest <- glm(breaks ~ wool + tension, data = warpbreaks, family = poisson(link = "log"))
gtestreduced <- glm(breaks ~ 1, data = warpbreaks, family = poisson(link = "log"))
imp4 <- importance(gtest, gtestreduced)
expect_equal(class(imp4), "importance_plot")
plot(imp4)
})
test_that("importance glm works with weights", {
gtestreduced <- glm(vs ~ 1, data = mtcars, family = binomial(link = "logit"), weights = rep(1:2, nrow(mtcars) / 2))
imp5 <- importance(weighted_glm_binomial_model, gtestreduced)
expect_equal(class(imp5), "importance_plot")
plot(imp5)
gtestreduced <- glm(mpg ~ 1, data = mtcars, family = gaussian, weights = rep(1:2, nrow(mtcars) / 2))
imp6 <- importance(weigthed_glm_model, gtestreduced)
expect_equal(class(imp6), "importance_plot")
plot(imp6)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.