The dplyrUtil
package provides utilities that deal with common task and with unequal factor levels when using dplyr.
Common tasks when using dplyr are
# From CRAN (in future)
#install.packages("dplyrUtil")
# Or the the development version from GitHub:
# install.packages("devtools")
devtools::install_github("bgctw/dplyrUtil")
require(dplyr, quietly = TRUE)
require(tidyr, quietly = TRUE)
require(dplyrUtil, quietly = TRUE)
Example of convenient split-map-combine with example dataset:
ds <- tibble(
food = c("banana","strawberry","pear","bread","corn flakes")
, kind = factor(c(rep("fruit",3), rep("cereal",2)))
)
ds
#> # A tibble: 5 x 2
#> food kind
#> <chr> <fct>
#> 1 banana fruit
#> 2 strawberry fruit
#> 3 pear fruit
#> 4 bread cereal
#> 5 corn flakes cereal
fSub <- function(dss){ mutate(dss, countInKind = paste(kind,1:n()) )}
ds %>%
group_by(kind) %>%
mapGroups(fSub)
#> # A tibble: 5 x 3
#> # Groups: kind [2]
#> food kind countInKind
#> <chr> <fct> <chr>
#> 1 bread cereal cereal 1
#> 2 corn flakes cereal cereal 2
#> 3 banana fruit fruit 1
#> 4 strawberry fruit fruit 2
#> 5 pear fruit fruit 3
Compare this to the usual nest-map-unnest idiom:
fSub2 <- function(dss, kind){ mutate(dss, countInKind = paste(kind,1:n()) )}
ds %>%
group_by(kind) %>%
nest() %>%
mutate(data = purrr::map2(data, kind, fSub2)) %>%
unnest()
#> # A tibble: 5 x 3
#> kind food countInKind
#> <fct> <chr> <chr>
#> 1 fruit banana fruit 1
#> 2 fruit strawberry fruit 2
#> 3 fruit pear fruit 3
#> 4 cereal bread cereal 1
#> 5 cereal corn flakes cereal 2
See the usecase vignette and other package vignettes (*.md) for examples.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.