tsne_task: tSNE problem

View source: R/tsne_task.R

tsne_taskR Documentation

tSNE problem

Description

A function that will generate the task list that can be used to benchmark the acceleration of tSNE in COIL-20 data

Usage

tsne_task(perplexity = 30, rho = 2e-07, sd = 0.01)

Arguments

perplexity

Perplexity value used to calculate the similarity matrix in original space before embedding

rho

Initial Learning rate used in the MM algorithm for tSNE

sd

Standard deviation for the random initial embedding coordinates

Value

A list containing all components needed for benchmarking the problem

initfn

Parameter random initializing function

fixptfn

Updating function for the fixed point iteration problem

objfn

Function calculating the objective value for current parameter

...

Other arguments required in functions above

References

Yang Z, Peltonen J, Kaski S (2015). Majorization-minimization for manifold embedding. In: Artificial Intelligence and Statistics, 1088–1097. PMLR.

Examples

## Not run: 
set.seed(54321)
problem = tsne_task(rho=5e-6, sd=5e-3)
benchmark(
  problem,
  algorithm=c("raw", "squarem", "daarem", "pem", "qn", "nes"),
  ntimes = 20
)

## End(Not run)


bhtang127/AccelBenchmark documentation built on May 30, 2022, 2:21 a.m.