eigen_metrics | R Documentation |
This function calculates twelve (plus the first and second PCA) for several point geometry-related metrics (listed below) in parallel using C++ for a user-specified radius.
eigen_metrics(las = las, radius = 0.1, ncpu = 8)
las |
LAS Normalized las object. |
radius |
numeric the radius of the neighborhood |
ncpu |
integer the number of cpu's to be used in parallelfor the calculation |
A labeled data.table of point metrics for each point in the LAS object
eLargest
: first eigenvalue, \mjeqn\lambda_1ASCII representation
eMedium
: second eigenvalue, \mjeqn\lambda_2ASCII representation
eSmallest
: third eigenvalue, \mjeqn\lambda_3ASCII representation
eSum
: sum of eigenvalues, \mjeqn\sum_i=1^n=3 \lambda_iASCII representation
Curvature
: surface variation, \mjeqn\lambda_3 / \sum_i=1^n=3 \lambda_iASCII representation
Omnivariance
: high values correspond to spherical features and low values to planes or linear features, \mjeqn(\lambda_1 * \lambda_2 * \lambda_3)^1/3ASCII representation
Anisotropy
: relationships between the directions of the point distribution, \mjeqn(\lambda_1 - \lambda_3) / \lambda_1ASCII representation
Eigentropy
: entropy in the eigenvalues, \mjeqn- \sum_i=1^n=3 \lambda_i * ln(\lambda_i)ASCII representation
Linearity
: linear saliency, \mjeqn(\lambda_1 + \lambda_2) / \lambda_1ASCII representation
Verticality
: vertical saliency, \mjeqn1-abs(\langle (0,0,1),e_3\rangle)ASCII representation
Planarity
: planar saliency, \mjeqn(\lambda_2 + \lambda_3) / \lambda_1ASCII representation
Nx,Ny,Nz
: 3 components of the normal vector, ASCII representation
LASfile <- system.file("extdata", "MixedConifer.laz", package="lidR")
las <- readLAS(LASfile)
eigen = eigen_metrics(las, radius=2, ncpu=4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.