popsicleR | R Documentation |
Here we present popsicleR, a flexible R package aimed at providing most of the necessary quality controls and preliminary information for complete and detailed analysis of single cell RNA-seq data. In its workflow, popsicleR integrates all the pivotal steps necessary to assess sample quality, apply data tailored filters and perform doublets calculation and annotation analysis.
popsicleR builds on the R package Seurat and extends its functionalities with new ad hoc generated plots and calculations. Furthermore, popsicleR grants the possibility to investigate and analyze both human and mouse data through organism specific annotation packages.
Functions Index:
PrePlots
FilterPlots
CalculateDoublets
Normalize
ApplyRegression
CalculateCluster
MakeAnnotation
Francesco Grandi, Jimmy Caroli, Oriana Romano, Matteo Marchionni, Mattia Forcato and Silvio Bicciato
Maintainers:
Jimmy Caroli jimmy.caroli@sund.ku.dk
Francesco Grandi francesco.grandi1993@unimore.it
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, III WMM, Hao Y, Stoeckius M, Smibert P, Satija R (2019). “Comprehensive Integration of Single-Cell Data.” Cell, 177, –1888-1902–. https://doi.org/10.1016/j.cell.2019.05.031.
Samuel L. Wolock, Romain Lopez, Allon M. Klein, "Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data" (2019). Cell System, Volume 8,–281-291–.e9,ISSN 2405-4712,https://doi.org/10.1016/j.cels.2018.11.005.
Germain PL, Lun A, Macnair W and Robinson MD. Doublet identification in single-cell sequencing data using scDblFinder. F1000Research (2021), 10:979 https://doi.org/10.12688/f1000research.73600.1
Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, Chak S, Naikawadi RP, Wolters PJ, Abate AR, Butte AJ, Bhattacharya M (2019). “Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage.” Nat. Immunol., 20, –163-172–. doi: 10.1038/s41590-018-0276-y.
Sun H, Zhou Y, Fei L, Chen H, Guo G. "scMCA: A Tool to Define Mouse Cell Types Based on Single-Cell Digital Expression." (2019) Methods Mol Biol., 1935, –91-96–. doi: 10.1007/978-1-4939-9057-3_6. PMID: 30758821.
Useful links:
Report bugs at https://github.com/bicciatolab/popsicleR/issues
PrePlots('breast_single_cell', input_data="/path/to/data", 0.1, 200, cellranger = TRUE, c('TP53','PTEN'), organism="human")
FilterPlots(umi_object, G_RNA_low = 500, G_RNA_hi= Inf, U_RNA_low = 0, U_RNA_hi = 37000, percent_mt_hi = 10, percent_ribo_hi= 100, percent_disso_hi = 100)
## first run:
umi_object <- CalculateDoublets(umi_object, method = "scrublet", dbs_thr='none', dbs_remove=FALSE)
## second run:
CalculateDoublets(umi_object, method = "scrublet", dbs_thr=0.22, dbs_remove=FALSE)
Normalize(umi_object, variable_genes=2000)
## first run:
ApplyRegression(UMI= umi_object, organism= "human", variables= "none", explore_PC=FALSE)
## second run:
ApplyRegression(UMI= umi_object, organism= "human", variables= c("nCount_RNA", "percent_mt", "S.Score", "G2M.Score"), explore_PC=TRUE)
CalculateCluster(umi_object, 12, organism= "human", cluster_res= 0.8)
MakeAnnotation(umi_object, organism="human", cluster_res=0.8)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.