normalise_dlc: Daily load curve normalisation

View source: R/transformation.R

normalise_dlcR Documentation

Daily load curve normalisation

Description

Normalise time serie applying pre processing transformations and considering multiple input variables. Ignoring specific dates if required and supporting multiple normalisation methods

Usage

normalise_dlc(
  data,
  localTimeZone,
  transformation = "relative",
  inputVars = c("loadCurves"),
  nDayParts = 24,
  holidays = c(),
  method = "range01",
  scalingAttr = NULL,
  balanceOutdoorTemperatures = NULL
)

Arguments

data

<timeserie>

localTimeZone

<string> specifying the local time zone related to the building in analysis. The format of this time zones are defined by the IANA Time Zone Database (https://www.iana.org/time-zones).

transformation

<string> absolute or relative

inputVars

<array> of strings. Possible values: loadCurves, daysWeekend, daysHolidays, daysWeek, dailyTemperature, dailyConsumption, dailyHdd, dailyCdd, ratioDailyConsumptionHdd, ratioDailyConsumptionCdd

nDayParts

<int> number of part days. Clustering considering parts of the day as "aggregation" of multiple hours. Default value 24 so each hour is considered a single part of the day

holidays

<array> of dates. Holidays dates that are ignored in clustering phase.

method

<string> Normalisation methods supported: - range01. Min-max normalisation method - znorm. Z-score normalisation method

scalingAttr

<data.frame> it includes the scaling attributes for each variable

balanceOutdoorTemperatures

<array> of floats with the balance temperatures used in the degree days calculation. Optional.

Value

normalised load <data.frame>


biggproject/biggr documentation built on Oct. 2, 2024, 11:13 p.m.