pcaServer: Shiny Module – PCA plots

View source: R/shiny_pca.R

pcaUIR Documentation

Shiny Module – PCA plots

Description

Shiny Module – PCA plots

Usage

pcaUI(id, datasets = NULL)

pcaServer(
  id,
  pca,
  covar,
  idcol = "ID",
  threeD = FALSE,
  colorBy = NULL,
  symbolBy = NULL
)

Arguments

id

identifier of the shiny module (character vector)

datasets

if not NULL, a character vector specifying the data sets (see Details)

pca

pca matrix – columns correspond to principal components, rows to observations. Rows must be named and must correspond to the ID column of the covariate data frame.

covar

data frame containing covariates. The identifiers of the samples in the covariate data frame are taken from the ID column (by default, "ID").

idcol

name of the ID column in the covariate data frame.

threeD

whether the plot should be three-dimensional by default

colorBy

selected covariate to use for coloring the plot

symbolBy

selected covariate to use for symbols on the plot

Datasets

Rather than specifying pca as a matrix and covariates as a data frame, these arguments can be, respectively, named lists of matrices and of data frames. This allows to switch between different data sets (e.g. with different samples, covariates) or between different representations (e.g. different PCA variants or other transformations such as Umap). Note that if the pca argument is a list, then the covar argument must be a list, too, and all the names of the pca list must be also in the covar list.

Examples

if(interactive()) {
  data(iris)
  covar <- iris
 
  pca <- prcomp(iris[,1:4], scale.=TRUE)
 
  ui <- fluidPage(pcaUI("pca"))
 
  server <- function(input, output, session) {
    pcaServer("pca", pca$x, covar, colorBy="Species")
  }
 
  shinyApp(ui, server)
}

bihealth/bioshmods documentation built on July 1, 2023, 4:32 a.m.