STRS: Self-tuning Rank Selection.

Description Usage Arguments Value Examples

View source: R/STRS.R

Description

STRS estimates the reduced-rank of the coefficient in multivariate linear regressions. It can also be used to select of the number of factors in factor models.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
STRS(
  data_Y,
  data_X,
  type = "STRS-MC",
  rank_X = NULL,
  self_tune = TRUE,
  rep_MC = 200,
  rank_tol = 1e-04,
  C = 2.01
)

Arguments

data_Y

A n by m response data matrix.

data_X

A n by p feature data matrix.

type

String. One of \"STRS-DB", "STRS-MC" and "SSTRS"\. The default is "STRS-MC".

  • "STRS-DB" and "STRS-MC" are for general dimensional settings;

  • "STRS-DB" uses deterministic expressions for updating lambda while "STRS-MC" updates lambda by Monte-Carlo simulations. "STRS-DB" is recommended if "STRS-MC" is computationally burdensome.

  • "SSTRS" is a simpler version of "STRS-DB" when either n >> m or n << m.

rank_X

An integer, the specified rank of data_X. If unspecified, this is estimated from data_X as the largest k such that

σ_k(data_X) ≥ rank_tol.

self_tune

Logical. TRUE if iteratively estimate the rank and FALSE otherwise. The default is TRUE.

rep_MC

An integer. The number of Monte Carlo simulations. Default is 200.

rank_tol

The tolerence level for determining the rank of data_X when rank_X is NULL. Default is 1e-4.

C

A numerical constant for the intial lambda. Default is 2.01.

Value

The estimated rank.

Examples

1
2
3
  library(STRS)
  est_rank <- STRS(Y, X)
  est_rank <- STRS(Y, X, type = "STRS-DB")

bingx1990/STRS documentation built on Jan. 22, 2022, 8:46 a.m.