knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures", out.width = "100%" )
description <- read.dcf("DESCRIPTION") version <- as.vector(description[, "Version"]) min.r <- substr(description[, "Depends"], 7, 11)
The InPlotSampling package provides a way for researchers to easily implement these sampling methods in practice.
Sampling is made following the diagram below.
Sampling is made following the diagram below.
Use the following code to install this package:
if (!require("remotes")) install.packages("remotes") remotes::install_github("AAGI-AUS/InPlotSampling", upgrade = FALSE)
JPS sample and estimator
set.seed(112) population_size <- 600 # the number of samples to be ranked in each set H <- 3 with_replacement <- FALSE sigma <- 4 mu <- 10 n_rankers <- 3 # sample size n <- 30 rhos <- rep(0.75, n_rankers) taus <- sigma * sqrt(1 / rhos^2 - 1) population <- qnorm((1:population_size) / (population_size + 1), mu, sigma) data <- InPlotSampling::jps_sample(population, n, H, taus, n_rankers, with_replacement) data <- data[order(data[, 2]), ] InPlotSampling::rss_jps_estimate( data, set_size = H, method = "JPS", confidence = 0.80, replace = with_replacement, model_based = FALSE, pop_size = population_size ) #> Estimator Estimate Standard Error 80% Confidence intervals #> 1 UnWeighted 9.570 0.526 8.88,10.26 #> 2 Sd.Weighted 9.595 0.569 8.849,10.341 #> 3 Aggregate Weight 9.542 0.500 8.887,10.198 #> 4 JPS Estimate 9.502 0.650 8.651,10.354 #> 5 SRS estimate 9.793 0.783 8.766,10.821 #> 6 Minimum 9.542 0.500 8.887,10.198
SBS PPS sample and estimator
set.seed(112) # SBS sample size, PPS sample size sample_sizes <- c(5, 5) n_population <- 233 k <- 0:(n_population - 1) x1 <- sample(1:13, n_population, replace = TRUE) / 13 x2 <- sample(1:8, n_population, replace = TRUE) / 8 y <- (x1 + x2) * runif(n = n_population, min = 1, max = 2) + 1 measured_sizes <- y * runif(n = n_population, min = 0, max = 4) population <- matrix(cbind(k, x1, x2, measured_sizes), ncol = 4) sample_result <- sbs_pps_sample(population, sample_sizes) # estimate the population mean and construct a confidence interval df_sample <- sample_result$sample sample_id <- df_sample[, 1] y_sample <- y[sample_id] sbs_pps_estimates <- sbs_pps_estimate( population, sample_sizes, y_sample, df_sample, n_bootstrap = 100, alpha = 0.05 ) print(sbs_pps_estimates) #> n1 n2 Estimate St.error 95% Confidence intervals #> 1 5 5 2.849 0.1760682 2.451,3.247
This package can be cited using citation("InPlotSampling")
which generates
citation("InPlotSampling")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.