#' Zero-Inflated Models for Count Time Series with Excess Zeros
#'
#' Fits observation-driven and parameter-driven models for count time series with excess zeros.
#'
#' The package \code{ZIM} contains functions to fit statistical models for count time series
#' with excess zeros (Yang et al., 2013, 2015). The main function for fitting observation-driven models
#' is \code{\link{zim}}, and the main function for fitting parameter-driven models is \code{\link{dzim}}.
#' @note The observation-driven models for zero-inflated count time series can also be fit using the function
#' \code{\link[pscl]{zeroinfl}} from the \code{pscl} package (Zeileis et al., 2008).
#' Fitting parameter-driven models is based on sequential Monte Carlo (SMC) methods, which are
#' computer intensive and could take several hours to estimate the model parameters.
#'
#' @name ZIM-package
#'
#' @aliases ZIM
#'
#' @references
#' Yang, M., Cavanaugh, J. E., and Zamba, G. K. D. (2015). State-space models for count time series
#' with excess zeros. \emph{Statistical Modelling}, \bold{15}:70-90 \cr \cr
#' Yang, M., Zamba, G. K. D., and Cavanaugh, J. E. (2013). Markov regression models for count time series
#' with excess zeros: A partial likelihood approach. \emph{Statistical Methodology}, \bold{14}:26-38. \cr \cr
#' Zeileis, A., Kleiber, C., and Jackman, S. (2008). Regression models for count data in \code{R}.
#' \emph{Journal of Statistical Software}, \bold{27}(8).
#'
#' @keywords package
#'
#' @import MASS
NULL
#' @import stats
NULL
#' @importFrom graphics points
NULL
#' @docType data
#'
#' @name injury
#'
#' @title Example: Injury Series from Occupational Health
#'
#' @description Monthly number of injuries in hospitals from July 1988 to October 1995.
#'
#' @source Numbers from Figure 1 of Yau et al. (2004).
#'
#' @references
#' Yau, K. K. W., Lee, A. H. and Carrivick, P. J. W. (2004). Modeling zero-inflated count series with
#' application to occupational health. \emph{Computer Methods and Programs in Biomedicine}, \bold{74}, 47-52.
#'
#' @examples
#' data(injury)
#' plot(injury, type = "o", pch = 20, xaxt = "n", yaxt = "n", ylab = "Injury Count")
#' axis(side = 1, at = seq(1, 96, 8))
#' axis(side = 2, at = 0:9)
#' abline(v = 57, lty = 2)
#' mtext("Pre-intervention", line = 1, at = 25, cex = 1.5)
#' mtext("Post-intervention", line = 1, at = 80, cex = 1.5)
#'
#' @keywords datasets
NULL
#' @docType data
#'
#' @name syph
#'
#' @title Example: Syphilis Series
#'
#' @description Weekly number of syphilis cases in the United States from 2007 to 2010.
#'
#' @format A data frame with 209 observations on the following 69 variables.
#' \tabular{ll}{
#' \code{year} \tab Year \cr
#' \code{week} \tab Week \cr
#' \code{a1} \tab \bold{United States} \cr
#' \code{a2} \tab \bold{New England} \cr
#' \code{a3} \tab Connecticut \cr
#' \code{a4} \tab Maine \cr
#' \code{a5} \tab Massachusetts \cr
#' \code{a6} \tab New Hampshire \cr
#' \code{a7} \tab Rhode Island \cr
#' \code{a8} \tab Vermont \cr
#' \code{a9} \tab \bold{Mid. Atlantic} \cr
#' \code{a10} \tab New Jersey \cr
#' \code{a11} \tab New York (Upstate) \cr
#' \code{a12} \tab New York City \cr
#' \code{a13} \tab Pennsylvania \cr
#' \code{a14} \tab \bold{E.N. Central} \cr
#' \code{a15} \tab Illinois \cr
#' \code{a16} \tab Indiana \cr
#' \code{a17} \tab Michigan \cr
#' \code{a18} \tab Ohio \cr
#' \code{a19} \tab Wisconsin \cr
#' \code{a20} \tab \bold{W.N. Central} \cr
#' \code{a21} \tab Iowa \cr
#' \code{a22} \tab Kansas \cr
#' \code{a23} \tab Minnesota \cr
#' \code{a24} \tab Missouri \cr
#' \code{a25} \tab Nebraska \cr
#' \code{a26} \tab North Dakota \cr
#' \code{a27} \tab South Dakota \cr
#' \code{a28} \tab \bold{S. Atlantic} \cr
#' \code{a29} \tab Delaware \cr
#' \code{a30} \tab District of Columbia \cr
#' \code{a31} \tab Florida \cr
#' \code{a32} \tab Georgia \cr
#' \code{a33} \tab Maryland \cr
#' \code{a34} \tab North Carolina \cr
#' \code{a35} \tab South Carolina \cr
#' \code{a36} \tab Virginia \cr
#' \code{a37} \tab West Virginia \cr
#' \code{a38} \tab \bold{E.S. Central} \cr
#' \code{a39} \tab Alabama \cr
#' \code{a40} \tab Kentucky \cr
#' \code{a41} \tab Mississippi \cr
#' \code{a42} \tab Tennessee \cr
#' \code{a43} \tab \bold{W.S. Central} \cr
#' \code{a44} \tab Arkansas \cr
#' \code{a45} \tab Louisana \cr
#' \code{a46} \tab Oklahoma \cr
#' \code{a47} \tab Texas \cr
#' \code{a48} \tab \bold{Moutain} \cr
#' \code{a49} \tab Arizona \cr
#' \code{a50} \tab Colorado \cr
#' \code{a51} \tab Idaho \cr
#' \code{a52} \tab Montana \cr
#' \code{a53} \tab Nevada \cr
#' \code{a54} \tab New Mexico \cr
#' \code{a55} \tab Utah \cr
#' \code{a56} \tab Wyoming \cr
#' \code{a57} \tab \bold{Pacific} \cr
#' \code{a58} \tab Alaska \cr
#' \code{a59} \tab California \cr
#' \code{a60} \tab Hawaii \cr
#' \code{a61} \tab Oregon \cr
#' \code{a62} \tab Washington \cr
#' \code{a63} \tab American Samoa \cr
#' \code{a64} \tab C.N.M.I. \cr
#' \code{a65} \tab Guam \cr
#' \code{a66} \tab Peurto Rico \cr
#' \code{a67} \tab U.S. Virgin Islands}
#'
#' @note C.N.M.I.: Commonwealth of Northern Mariana Islands.
#'
#' @source CDC Morbidity and Mortality Weekly Report (\url{http://www.cdc.gov/MMWR/}).
#'
#' @examples
#' data(syph)
#' plot(ts(syph$a33), ylab = "Count", main = "Maryland", las = 1)
#'
#' @keywords datasets
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.