gaussMItest | R Documentation |
A modified version of pcalg::gaussCItest
,
to be used within
pcalg::skeleton
, pcalg::pc
or
pcalg::fci
when multiply imputated data sets are available.
gaussMItest(x, y, S, suffStat) gaussCItestMI(x, y, S = NULL, data)
x, y, S |
(Integer) position of variable X, Y and set of variables S, respectively, in the adjacency matrix. It is tested, whether X and Y are conditionally independent given the subset S of the remaining nodes. |
suffStat |
A list of length m+1, where m is the number of imputations; the first m elements are the covariance matrices of the m imputed data sets, the m-th element is the sample size. Can be obtained from a mids object by getSuff(mids, test="gaussMItest") |
data |
An object of type mids, which stands for 'multiply imputed data set', typically created by a call to function mice() |
gaussMItest
is faster, as it uses pre-calculated covariance matrices.
A p-value.
## load data (numeric variables) dat <- as.matrix(windspeed) ## delete some observations set.seed(123) dat[sample(1:length(dat), 260)] <- NA ## Impute missing values under normal model imp <- mice(dat, method = "norm", printFlag = FALSE) ## analyse data # complete data: suffcomplete <- getSuff(windspeed, test = "gaussCItest") gaussCItest(1, 2, c(4,5), suffStat = suffcomplete) # multiple imputation: suffMI <- getSuff(imp, test = "gaussMItest") gaussMItest(1, 2, c(4,5), suffStat = suffMI) gaussCItestMI(1, 2, c(4,5), data = imp) # test-wise deletion: gaussCItwd(1, 2, c(4,5), suffStat = dat) # list-wise deletion: dat2 <- dat[complete.cases(dat), ] sufflwd <- getSuff(dat2, test = "gaussCItest") gaussCItest(1, 2, c(4,5), suffStat = sufflwd) ## use gaussMItest or gaussCItestMI within pcalg::pc (pc.fit <- pc(suffStat = suffMI, indepTest = gaussMItest, alpha = 0.01, p = 6)) (pc.fit <- pc(suffStat = imp, indepTest = gaussCItestMI, alpha = 0.01, p = 6))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.