| iSA | R Documentation | 
This function implements the iSA - integrated Sentiment Analysis algorihtm
iSA(Strain, Stest, Dtrain, nboot = 1000, predict = FALSE,
    ret.boot = FALSE, seqlen = 5, sparse = FALSE,
    verbose = TRUE, tolerance=Inf)
Strain | 
 a vector of stem strings belonging to the training set  | 
Stest | 
 a vector of stem strings belonging to the test set  | 
Dtrain | 
 a vector of codings belonging to the training set  | 
nboot | 
 number of bootstrap replications for standard error estimation  | 
predict | 
 non in use  | 
ret.boot | 
 return all bootstrap estimates?  | 
seqlen | 
 length of substrings used in iSA  | 
sparse | 
 use sparse matrix to store data?  | 
verbose | 
 show all steps?  | 
tolerance | 
 threshold for numerical determinant. Defaut =   | 
Prediction is implemented but only beta. Use it at your own risk.
est | 
 estimated parameters  | 
tab | 
 table of results  | 
best | 
 bootstrap estimated parameters  | 
btab | 
 table of results for bootstrap estimates  | 
pred | 
 prediction for each entry  | 
tim | 
 execution time  | 
Stefano M. Iacus
Iacus, S.M., Curini, L., Ceron, A. (2015) iSA (U.S. provisional patent application No. 62/215264) Ceron, A., Curini, L., Iacus, S.M. (2016) iSA: A fast, scalable and accurate algorithm for sentiment analysis of social media content, Information Sciences, V. 367-368, p. 105-124.
prep.data
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.