knitr::opts_chunk$set(message = FALSE, echo = FALSE)
library(tidyverse) library(here) library(openxlsx) library(amstools) library(HybridGIS) options(digits = 4) options(scipen = 3)
Data reduction and analysis for carbonate samples run on June 11, 2021. Test run of smaller samples. All samples ~8mg carbonate. Includes C-1, C-2, and NOSAMS2.
Outliers are defined as points 1.5 * interquartile range above the 3rd quartile or below the 1st quartile.
Data reduction proceeds as follows:
df <- process_hgis_results(here("data/USAMS061121R.txt")) write_csv(df, here("data_analysed/HGIS_2021-06-11_raw.csv")) write.xlsx(df, here("data_analysed/HGIS_2021-06-11_raw.xlsx"))
df %>% filter(pos > 2) %>% plot_hgis_time(norm_ratio, sig_norm_ratio, outlier = !.$ok_calc) + labs(title = "Sample ratio vs. time", y = "Fraction modern")
df %>% filter(pos > 2) %>% plot_hgis_time(he12C * 1E6, outlier = !.$ok_calc) + labs(title = "Sample current vs time", x = "Time (s)", y = "Current (uA)")
df_sum <- sum_hgis_targets(df, remove_outliers = FALSE) %>% norm_hgis() %>% blank_cor_hgis() write_csv(df_sum, here("data_analysed/HGIS_2021-06-11_results.csv")) write.xlsx(df_sum, here("data_analysed/HGIS_2021-06-11_results.xlsx"))
Fm and Fm error are blank corrected Fm and error, respectively.
df_sum %>% filter(pos > 2) %>% mutate(he12C = he12C * 1E6) %>% select(Pos = pos, Name = sample_name, `Current (uA)` = he12C, `N runs` = n_runs, Fm = fm_corr, `Fm error` = sig_fm_corr) %>% arrange(Name) %>% knitr::kable() # gt::gt()
df_sum %>% filter(pos > 2) %>% plot_hgis_summary()
Compare results for samples with more than one replicate.
df_sum %>% filter(pos > 2) %>% compare_replicates() %>% select(Name, `Mean current (uA)` = he12C_mean, `SD of current` = he12C_sd, `Mean Fm` = fm_corr_mean, `SD of Fm` = fm_corr_sd, `Mean sample error` = sig_fm_corr_mean) %>% knitr::kable()
Comparison to expected Fm for sample types with a consensus value.
cons <- df_sum %>% filter(pos > 2, !is.na(fm_consensus)) %>% select(sample_name, fm_consensus, fm_corr, sig_fm_corr) %>% mutate(Fm_diff = fm_corr - fm_consensus, sigma = amstools::sigma(fm_corr, fm_consensus, sig_fm_corr)) %>% arrange(sample_name) %>% select(Name = sample_name, #`Mean current (uA)` = he12C_mean, #`SD of current` = he12C_sd, `Consensus Fm` = fm_consensus, Fm = fm_corr, `Fm error` = sig_fm_corr, `Difference` = Fm_diff, Sigma = sigma) knitr::kable(cons)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.