paleocar

paleocar is an R package implementing functions to perform spatio-temporal paleoclimate reconstruction from tree-rings using the CAR (Correlation Adjusted corRelation) approach of Zuber and Strimmer as implemented in the care package for R. It is optimized for speed and memory use.

This is based on the approach used in Bocinsky and Kohler (2014):

Bocinsky, R. K. and Kohler, T. A. (2014). A 2,000-year reconstruction of the rain-fed maize agricultural niche in the US Southwest. Nature Communications, 5:5618. doi: 10.1038/ncomms6618.

The primary difference between the latest version of paleocar and that presented in Bocinsky and Kohler (2014) is, here, model selection is performed by minimizing the corrected Akaike's Information Criterion.

A more recent reference would be Bocinsky et al. (2016):

Bocinsky, R. K., Rush, J., Kintigh, K. W., and Kohler, T. A. (2016). Exploration and exploitation in the macrohistory of the pre-Hispanic Pueblo Southwest. Science Advances, 2:e1501532.

This package has been built and tested on a source (Homebrew) install of R on macOS 10.12 (Sierra), and has been successfully run on Ubuntu 14.04.5 LTS (Trusty), Ubuntu 16.04.1 LTS (Xenial) and binary installs of R on Mac OS 10.12 and Windows 10.

Development

Install paleocar

install.packages("devtools")
devtools::install_github("bocinsky/paleocar")
library(paleocar)

First, in terminal:

sudo add-apt-repository ppa:ubuntugis/ppa -y
sudo apt-get update -q
sudo apt-get install libssl-dev libcurl4-openssl-dev netcdf-bin libnetcdf-dev gdal-bin libgdal-dev

Then, in R:

update.packages("survival")
install.packages("devtools")
devtools::install_github("bocinsky/paleocar")
library(paleocar)

Demonstration

This demo script is available in the /inst folder at the location of the installed package.

Load paleocar and set a working directory

library(paleocar)
library(magrittr) # The magrittr package enables piping in R.
library(ggplot2)

# Set a directory for testing
testDir <- "./paleocar_test/"
# and create it if necessary
dir.create(testDir, showWarnings=F, recursive=T)

Load test datasets

paleocar ships with test files defining a study area (Mesa Verde National Park), and pre-extracted data from the International Tree Ring Databank using the FedData package. See the data-raw/data.R script (or the documentation for FedData) to learn how to download these data.

# Load spatial polygon for the boundary of Mesa Verde National Park (MVNP) in southwestern Colorado:
data(mvnp)

# Get Tree-ring data from the ITRDB for 10-degree buffer around MVNP
data(itrdb)

# Get 1/3 arc-second PRISM gridded data for the MVNP north study area (water-year [October--September] precipitation, in millimeters)
data(mvnp_prism)

Run paleocar

paleocar can be run for either single location given by a vector of annualized climate data, a matrix of locations, or over gridded climate data such as PRISM in raster format. There are three primary functions:

Finally, the paleocar() method is a convenience wrapper that runs all three of these functions and returns a list with their output. See the documentation for each function for details.

paleocar reconstruction for a single location

paleocar may be run for a single location by providing a vector of annualized values to be reconstructed. Simply provide a numeric vector the same length as your calibration years as the predictands parameter.

# Extract a vector of annualized climate data (the first cell in the raster)
mvnp_prism.vector <- mvnp_prism[1][1,]

test.vector <- paleocar_models(predictands = mvnp_prism.vector,
                               chronologies = itrdb,
                               calibration.years = 1924:1983,
                               prediction.years = 1:2000,
                               verbose = T)

# Generate predictions and uncertainty (and plot timeseries of each)                             
test.prediction <- predict_paleocar_models(models = test.vector,
                                           prediction.years = 600:1299)

test.prediction %>%
  ggplot(aes(x = year,
             y = Prediction)) +
  geom_ribbon(aes(ymin = Prediction - `PI Deviation`,
                  ymax = Prediction + `PI Deviation`),
              color = NA,
              fill = "dodgerblue") +
  geom_line(size = 0.2)
paleocar reconstruction for multiple locations using the same set of predictors (in this case, tree-ring chronologies)

Running paleocar on a matrix of locations (predictands) will generate reconstructions that select from the same set of predictors (chronologies). The matrix must be formatted such that each location is in a column, and each row is a year of data. Note that the number of rows of the matrix must be the same as the number of years provided to calibration.years.

# Extract a matrix of annualized climate data (all cells in the raster)
mvnp_prism.matrix <- mvnp_prism %>%
  raster::as.matrix() %>% 
  t()

test.matrix <- paleocar_models(predictands = mvnp_prism.matrix,
                               chronologies = itrdb,
                               calibration.years = 1924:1983,
                               prediction.years = 1:1985,
                               verbose = T)

# Generate predictions and uncertainty (and plot location means in uncertainty)
test.prediction <- predict_paleocar_models(models = test.matrix,
                                           prediction.years = 600:1299)

test.prediction %>%
  dplyr::mutate(cell = as.factor(cell)) %>%
  dplyr::filter(cell %in% c(1,200,400,600)) %>%
  ggplot(aes(x = year,
             y = `Prediction (scaled)`)) +
  geom_ribbon(aes(ymin = `Prediction (scaled)` - `PI Deviation (scaled)`,
                  ymax = `Prediction (scaled)` + `PI Deviation (scaled)`,
                  fill = cell),
              color = NA) +
  geom_line(size = 0.2) +
  facet_wrap(~cell, nrow = 2) +
  xlab("Year CE")
paleocar reconstruction over a grid

Paleocar can also be performed over a gridded climate dataset such as PRISM, so long as it is a RasterStack or RasterBrick as defined in the raster package for R. Results will be returned in RasterBrick format.

# Print to show format
mvnp_prism

test.raster <- paleocar_models(predictands = mvnp_prism,
                               chronologies = itrdb,
                               calibration.years = 1924:1983,
                               prediction.years = 600:1299,
                               verbose = T)

# Generate predictions and errors
test.raster.predictions <- predict_paleocar_models(models = test.raster,
                                                   prediction.years = 600:1299)

test.raster.predictions$`Prediction (scaled)` %>%
  raster::mean() %>%
  raster::plot()

# test.raster.predictions$`PI Deviation (scaled)` %>%
#   raster::mean() %>%
#   raster::plot()
paleocar() convenience wrapper

The paleocar() convenience wrapper returns a list containing the models, reconstructions, and uncertainty. The paleocar() method also automatically saves the output of predict_paleocar_models() and errors_paleocar_models(). Pass variables through this function to other ones (e.g., meanVar = "chained").

# Generate models and perform the reconstruction and error predictions.

mvnp_models <- paleocar_models(predictands = mvnp_prism,
                       label = "mvnp_prism",
                       chronologies = itrdb,
                       calibration.years = 1924:1983,
                       prediction.years = 600:1299,
                       out.dir = testDir,
                       force.redo = T,
                       verbose = T)

mvnp_recon <- paleocar(models = mvnp_models,
                       predictands = mvnp_prism,
                       label = "mvnp_prism",
                       chronologies = itrdb,
                       calibration.years = 1924:1983,
                       prediction.years = 600:1299,
                       out.dir = testDir,
                       force.redo = T,
                       verbose = T)

mvnp_recon <- paleocar(predictands = mvnp_prism,
                       label = "mvnp_prism",
                       chronologies = itrdb,
                       calibration.years = 1924:1983,
                       prediction.years = 600:1299,
                       out.dir = testDir,
                       force.redo = T,
                       verbose = T)

# Examine the structure of the output
str(mvnp_recon, 
    max.level = 2)

You can quickly load a prior reconstruction by setting force.redo = FALSE:

# Generate models and perform the reconstruction and error predictions.
mvnp_recon <- paleocar(predictands = mvnp_prism,
                       label = "mvnp_prism",
                       chronologies = itrdb,
                       calibration.years = 1924:1983,
                       prediction.years = 600:1299,
                       out.dir = testDir,
                       force.redo = F,
                       verbose = T)

Plot results

mvnp_recon$predictions$Prediction %>%
  raster::mean() %>%
  raster::plot()

mvnp_recon$predictions$`PI Deviation` %>%
  raster::mean() %>%
  raster::plot()

mvnp_recon$predictions$`Prediction (scaled)` %>%
  raster::mean() %>%
  raster::plot()

mvnp_recon$predictions$`PI Deviation (scaled)` %>%
  raster::mean() %>%
  raster::plot()
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "README-"
)


bocinsky/paleocar documentation built on June 2, 2024, 4:12 a.m.