Description Usage Details References Examples
This is just an example on how to use this package to generate the distribution of the population count.
1 | example()
|
This is a script that shows how to use the functions of this package to compute the distribution of the initial target population count, the distribution of the population count at successive time instants and the origin-destination matrix.
https://github.com/MobilePhoneESSnetBigData
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | # set the folder where the necessary input files are stored and the prefix of the input file names.
path <- 'extdata'
prefix <- 'postLocDevice'
# compute the deduplication factors
dpFileName <- system.file(path, 'duplicity.csv', package = 'inference')
rgFileName <- system.file(path, 'regions.csv', package = 'inference')
omega_r <- computeDeduplicationFactors(dpFileName, rgFileName, prefix,
system.file(path, package = 'inference'))
# reads the number of individuals detected by network
nFileName <- system.file(path, 'nnet.csv', package = 'inference')
nnet <- readNnetInitial(nFileName)
# compute the parameters of the distribution
pRFileName <- system.file(path, 'pop_reg.csv', package = 'inference')
pRateFileName <- system.file(path, 'pnt_rate.csv', package = 'inference')
grFileName <- system.file(path, 'grid.csv', package = 'inference')
params <- computeDistrParams(omega_r, pRFileName, pRateFileName, rgFileName, grFileName)
# A. Compute the population count distribution at t0
# compute the population count distribution using the Beta Negative Binomial distribution
n_bnb <- computeInitialPopulation(nnet, params, popDistr = 'BetaNegBin', rndVal = TRUE)
# display results
n_bnb$stats
head(n_bnb$rnd_values)
# compute the population count distribution using the Negative Binomial distribution
n_nb <- computeInitialPopulation(nnet, params, popDistr = 'NegBin', rndVal = TRUE)
# display results
n_nb$stats
head(n_nb$rnd_values)
# compute the population count distribution using the state process Negative Binomial distribution
n_stnb <- computeInitialPopulation(nnet, params, popDistr= 'STNegBin', rndVal = TRUE)
# display results
n_stnb$stats
head(n_stnb$rnd_values)
# B. compute the population count distribution at time instants t > t0
# first set the name of the file with the population moving from one region
# to another (output of the aggregation package)
nnetODFile <- system.file(path, 'nnetOD.zip', package = 'inference')
# 1.Using the Beta Negative Binomial distribution
nt_bnb <- computePopulationT(n_bnb$rnd_values, nnetODFile, rndVal = TRUE)
# display results
# first, select a random time instant
times <- names(nt_bnb)
t <- sample(1:length(times), size = 1)
t
nt_bnb[[t]]$stats
head(nt_bnb[[t]]$rnd_values)
# 2.Using the Negative Binomial distribution
nt_nb <- computePopulationT(n_nb$rnd_values, nnetODFile, rndVal = TRUE)
# display results
# first, select a random time instant
times <- names(nt_nb)
t <- sample(1:length(times), size = 1)
t
nt_nb[[t]]$stats
head(nt_nb[[t]]$rnd_values)
# 3.Using the state process Negative Binomial distribution
nt_stnb <- computePopulationT(n_stnb$rnd_values, nnetODFile, rndVal = TRUE)
# display results
# first, select a random time instant
times <- names(nt_stnb)
t <- sample(1:length(times), size = 1)
t
nt_stnb[[t]]$stats
head(nt_stnb[[t]]$rnd_values)
# C. compute the origin-destination matrices for all pairs of time instants time_from-time_to
# first set the name of the file with the population moving from one region
# to another (output of the aggregation package)
nnetODFile <- system.file(path, 'nnetOD.zip', package = 'inference')
# 1.Using the Beta Negative Binomial distribution
OD_bnb <- computePopulationOD(n_bnb$rnd_values, nnetODFile, rndVal = TRUE)
# display results
time_pairs <- names(OD_bnb)
# first, select a random time instants pair
i <- sample(1:length(time_pairs), size = 1)
time_pairs[i]
OD_bnb[[i]]$stats
head(OD_bnb[[i]]$rnd_values)
# 2.Using the Negative Binomial distribution
OD_nb <- computePopulationOD(n_nb$rnd_values, nnetODFile, rndVal = TRUE)
# display results
time_pairs <- names(OD_nb)
# first, select a random time instants pair
i <- sample(1:length(time_pairs), size = 1)
time_pairs[i]
OD_nb[[i]]$stats
head(OD_nb[[i]]$rnd_values)
# 3.Using the state process Negative Binomial distribution
OD_stnb <- computePopulationOD(n_stnb$rnd_values, nnetODFile, rndVal = TRUE)
# display results
time_pairs <- names(OD_stnb)
# first, select a random time instants pair
i <- sample(1:length(time_pairs), size = 1)
time_pairs[i]
OD_stnb[[i]]$stats
head(OD_stnb[[i]]$rnd_values)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.