mvnpdfoptimC | R Documentation |
This is a concise description of what the function does.
mvnpdfoptimC(x, mean, varcovM, Log = TRUE)
mvnpdfsmartC(x, mean, varcovM, Log = TRUE)
mvnpdf(x, mean = rep(0, nrow(x)), varcovM = diag(nrow(x)), Log = TRUE)
mvnpdf_invC(x, mean = rep(0, nrow(x)), varcovM = diag(nrow(x)), Log = TRUE)
mvnpdfoptim(x, mean = rep(0, nrow(x)), varcovM = diag(nrow(x)), Log = TRUE)
mvnpdfoptim_par(x, mean = rep(0, nrow(x)), varcovM = diag(nrow(x)), Log = TRUE)
mvnpdfoptim_parIter(
x,
mean = rep(0, nrow(x)),
varcovM = diag(nrow(x)),
Log = TRUE,
ncores = 1
)
mvnpdfsmart(x, mean = rep(0, nrow(x)), varcovM = diag(nrow(x)), Log = TRUE)
mvnpdfsmart_par(x, mean = rep(0, nrow(x)), varcovM = diag(nrow(x)), Log = TRUE)
mvnpdfsmart_parpb(
x,
mean = rep(0, nrow(x)),
varcovM = diag(nrow(x)),
Log = TRUE,
ncpus = 1
)
mvnpdfsmart_sleepy(
x,
mean = rep(0, nrow(x)),
varcovM = diag(nrow(x)),
Log = TRUE
)
mvnpdfsmart_sleepy_par(
x,
mean = rep(0, nrow(x)),
varcovM = diag(nrow(x)),
Log = TRUE
)
x |
a p x n data matrix with n the number of observations and p the number of dimensions |
mean |
mean vector |
varcovM |
variance-covariance matrix |
Log |
logical flag for returning the log of the probability density
function. Default is |
ncores |
number of parallel cores to split task over when using itertools |
ncpus |
number of cores for parallelized pbapply |
This part gives more details on the function.
a list containing the input matrix x and y the multivariate-Normal probability density function computed at x
mvnpdf(x=matrix(1.96), Log=FALSE)
dnorm(1.96)
mvnpdf(x=matrix(rep(1.96, 2), nrow=2, ncol=1), Log=FALSE)
## Not run:
n <- 10000
mb <- microbenchmark::microbenchmark(
mvtnorm::dmvnorm(matrix(1.96, nrow = n, ncol = 2)),
mvnpdfsmart(x=matrix(1.96, nrow = 2, ncol = n), Log=FALSE),
mvnpdfoptim_par(x=matrix(1.96, nrow = 2, ncol = n), Log=FALSE),
times=10L)
mb
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.