knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "README-" )
library(mlr) library(sdmexplain) library(dplyr)
sdmexplain
is an R package to make Species Distribution Models more explainable.
devtools::install_github("boyanangelov/sdmexplain")
Preparing training data.
occ_data_raw <- sdmbench::get_benchmarking_data("Lynx lynx") occ_data <- occ_data_raw$df_data occ_data$label <- as.factor(occ_data$label) coordinates.df <- rbind(occ_data_raw$raster_data$coords_presence, occ_data_raw$raster_data$background) occ_data <- cbind(occ_data, coordinates.df) train_test_split <- rsample::initial_split(occ_data, prop = 0.7) data.train <- rsample::training(train_test_split) data.test <- rsample::testing(train_test_split) train.coords <- dplyr::select(data.train, c("x", "y")) data.train$x <- NULL data.train$y <- NULL test.coords <- dplyr::select(data.test, c("x", "y")) data.test$x <- NULL data.test$y <- NULL
Training SDM.
task <- makeClassifTask(id = "model", data = data.train, target = "label") lrn <- makeLearner("classif.lda", predict.type = "prob") mod <- train(lrn, task)
Preparing data for explainability.
explainable_data <- prepare_explainable_data(data.test, mod, test.coords)
processed_plots <- process_lime_plots(explainable_data$explanation)
Plotting explainable map.
plot_explainable_sdm(explainable_data$processed_data, explainable_data$processed_plots)
Cite as: Boyan Angelov. (2018, October 4). boyanangelov/sdmexplain: sdmexplain: An R Package for Making Species Distribution Models More Explainable (Version v0.1.0). Zenodo. http://doi.org/10.5281/zenodo.1445779
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.