knitr::opts_chunk$set(echo = TRUE, eval = F) # library(BhGLM) library(tidyverse)
N = 1000 K = 10 x = sim.x(n=N, m=K, corr=0.6) # simulate correlated continuous variables h = rep(0.1, 4) # assign four non-zero main effects to have the assumed heritabilty nz = as.integer(seq(5, K, by=K/length(h))); nz yy = sim.y(x=x[, nz], mu=0, herit=h, p.neg=0.5, sigma=1.6) # simulate responses yy$coefs # y = yy$y.normal; fam = "gaussian"; y = scale(y) y = yy$y.ordinal; fam = "binomial" # y = yy$y.surv; fam = "cox" f1 = glmNet(x, y, family = fam, ncv = 1) c(f1$lambda, f1$prior.scale) f2 <- bglm(y ~ ., data= x, family = fam, prior = mt(df=Inf)) # f3 <- bglm(y ~ ., data= x, family = fam, prior = mt(df=Inf), group = 2) f3 <- bglm(y ~ ., data= x, family = fam, prior = mt(df=Inf), group = 1) f4 <- bglm_spline(y ~ ., data= x, family = fam, prior = mt(df=Inf), group = 10) f5 <- bmlasso_spline(x, y, family = fam, group = 10) f6 <- bmlasso(x, y , family = fam, group = 10) calculate_EDF(f2, vars = names(x)) calculate_EDF(f3, vars = names(x)) calculate_EDF(f4, vars = names(x)) df.adj(f2) df.adj(f3) df.adj(f4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.