Description Usage Arguments Value Examples
View source: R/build_MOTTE_tree_y.R
Fitting MOTTE Tree in the MOTTE.RF
1 2 3 4 5 6 7 8 9 10  | build_MOTTE_tree_CO(
  x.b,
  x.diff.1,
  x.diff.2,
  y.diff.1,
  y.diff.2,
  nodesize,
  nsplits,
  left.out
)
 | 
x.b | 
 Pre-treatment covariates, i.e. microbiomes  | 
nodesize | 
 An integer value. The threshold that control the maximum size of a node  | 
nsplits | 
 A numeric value, the number of maximum splits  | 
left.out | 
 left.out is ensure at least left.out*2 sample for either treated or untreated sample in the group  | 
x.e | 
 Post-treatment covariates, i.e. microbiomes  | 
treat | 
 A vector of binary value, the arm of treatment  | 
y.b | 
 Pre-treatment response, i.e. biomarkers  | 
y.e | 
 Post-treatment response, i.e. biomarkers  | 
seed | 
 a seed number to generate the random subsets of split candidates. Doesn't work when applying nsplit==NULL  | 
A data.tree object, node
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  | set.seed(1)
B <- create.B(10)
Z <- create.Z(10, 3)
tmp.dat <- sim_MOTTE_data( n.train = 500, n.test = 200,
p = 10, q = 3, ratio = 0.5,
B = B, Z = Z)
train.dat <- tmp.dat$train
x.b <- scale(train.dat$x.b, center = FALSE, scale = TRUE)
x.e <- scale(train.dat$x.e, center = FALSE, scale = TRUE)
y.b <- scale(train.dat$y.b, center = FALSE, scale = TRUE)
y.e <- scale(train.dat$y.e, center = FALSE, scale = TRUE)
treat <- train.dat$trt
#with(train.dat,
    build_MOTTE_tree(x.b, x.e, factor(treat), y.b, y.e,
                     nodesize=30, nsplits=NULL, left.out = 0.1)
 #)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.