| pcic | R Documentation |
Given the observed and predicted values of categorical data (of any number of
classes) computes the Proportion of Incorrectly Classified Cases (1 -
pccc(), the same as: 1 - accuracy).
pcic(observed, predicted, remove_na = TRUE)
observed |
( |
predicted |
( |
remove_na |
( |
A single numeric value with the Proportion of Incorrectly Classified Cases.
Other categorical_metrics:
accuracy(),
brier_score(),
categorical_summary(),
confusion_matrix(),
f1_score(),
kappa_coeff(),
math_mode(),
matthews_coeff(),
pccc(),
pr_auc(),
precision(),
recall(),
roc_auc(),
sensitivity(),
specificity()
## Not run:
pccc(c("a", "b"), c("a", "b"))
pccc(c("a", "b"), c("b", "a"))
pccc(c("a", "b"), c("b", "b"))
pccc(c("a", "b", "a"), c("b", "a", "c"))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.