#' Models
#'
#' Model constructor functions supplied by \pkg{MachineShop} are summarized in
#' the table below according to the types of response variables with which each
#' can be used.
#' \tabular{lccc}{
#' \strong{Function} \tab \strong{Categorical} \tab \strong{Continuous}
#' \tab \strong{Survival} \cr
#' \code{\link{AdaBagModel}} \tab f \tab \tab \cr
#' \code{\link{AdaBoostModel}} \tab f \tab \tab \cr
#' \code{\link{BARTModel}} \tab f \tab n \tab S \cr
#' \code{\link{BARTMachineModel}} \tab b \tab n \tab \cr
#' \code{\link{BlackBoostModel}} \tab b \tab n \tab S \cr
#' \code{\link{C50Model}} \tab f \tab \tab \cr
#' \code{\link{CForestModel}} \tab f \tab n \tab S \cr
#' \code{\link{CoxModel}} \tab \tab \tab S \cr
#' \code{\link{CoxStepAICModel}} \tab \tab \tab S \cr
#' \code{\link{EarthModel}} \tab f \tab n \tab \cr
#' \code{\link{FDAModel}} \tab f \tab \tab \cr
#' \code{\link{GAMBoostModel}} \tab b \tab n \tab S \cr
#' \code{\link{GBMModel}} \tab f \tab n \tab S \cr
#' \code{\link{GLMBoostModel}} \tab b \tab n \tab S \cr
#' \code{\link{GLMModel}} \tab f \tab m,n \tab \cr
#' \code{\link{GLMStepAICModel}} \tab b \tab n \tab \cr
#' \code{\link{GLMNetModel}} \tab f \tab m,n \tab S \cr
#' \code{\link{KNNModel}} \tab f,o \tab n \tab \cr
#' \code{\link{LARSModel}} \tab \tab n \tab \cr
#' \code{\link{LDAModel}} \tab f \tab \tab \cr
#' \code{\link{LMModel}} \tab f \tab m,n \tab \cr
#' \code{\link{MDAModel}} \tab f \tab \tab \cr
#' \code{\link{NaiveBayesModel}} \tab f \tab \tab \cr
#' \code{\link{NNetModel}} \tab f \tab n \tab \cr
#' \code{\link{ParsnipModel}} \tab f \tab m,n \tab S \cr
#' \code{\link{PDAModel}} \tab f \tab \tab \cr
#' \code{\link{PLSModel}} \tab f \tab n \tab \cr
#' \code{\link{POLRModel}} \tab o \tab \tab \cr
#' \code{\link{QDAModel}} \tab f \tab \tab \cr
#' \code{\link{RandomForestModel}} \tab f \tab n \tab \cr
#' \code{\link{RangerModel}} \tab f \tab n \tab S \cr
#' \code{\link{RFSRCModel}} \tab f \tab m,n \tab S \cr
#' \code{\link{RFSRCFastModel}} \tab f \tab m,n \tab S \cr
#' \code{\link{RPartModel}} \tab f \tab n \tab S \cr
#' \code{\link{SurvRegModel}} \tab \tab \tab S \cr
#' \code{\link{SurvRegStepAICModel}} \tab \tab \tab S \cr
#' \code{\link{SVMModel}} \tab f \tab n \tab \cr
#' \code{\link{SVMANOVAModel}} \tab f \tab n \tab \cr
#' \code{\link{SVMBesselModel}} \tab f \tab n \tab \cr
#' \code{\link{SVMLaplaceModel}} \tab f \tab n \tab \cr
#' \code{\link{SVMLinearModel}} \tab f \tab n \tab \cr
#' \code{\link{SVMPolyModel}} \tab f \tab n \tab \cr
#' \code{\link{SVMRadialModel}} \tab f \tab n \tab \cr
#' \code{\link{SVMSplineModel}} \tab f \tab n \tab \cr
#' \code{\link{SVMTanhModel}} \tab f \tab n \tab \cr
#' \code{\link{TreeModel}} \tab f \tab n \tab \cr
#' \code{\link{XGBModel}} \tab f \tab n \tab S \cr
#' \code{\link{XGBDARTModel}} \tab f \tab n \tab S \cr
#' \code{\link{XGBLinearModel}} \tab f \tab n \tab S \cr
#' \code{\link{XGBTreeModel}} \tab f \tab n \tab S \cr
#' }
#' Categorical: b = binary, f = factor, o = ordered\cr
#' Continuous: m = matrix, n = numeric\cr
#' Survival: S = Surv\cr
#' \cr
#' Models may be combined, tuned, or selected with the following meta-model
#' functions.
#' \tabular{ll}{
#' \code{\link{ModelSpecification}} \tab Model specification \cr
#' \code{\link{StackedModel}} \tab Stacked regression \cr
#' \code{\link{SuperModel}} \tab Super learner \cr
#' \code{\link{SelectedModel}} \tab Model selection from a candidate set \cr
#' \code{\link{TunedModel}} \tab Model tuning over a parameter grid \cr
#' }
#'
#' @name models
#'
#' @seealso \code{\link{modelinfo}}, \code{\link{fit}}, \code{\link{resample}}
#'
NULL
#' Model Inputs
#'
#' Model inputs are the predictor and response variables whose relationship is
#' determined by a model fit. Input specifications supported by
#' \pkg{MachineShop} are summarized in the table below.
#' \tabular{ll}{
#' \code{\link{formula}} \tab Traditional model formula \cr
#' \code{\link{matrix}} \tab Design matrix of predictors \cr
#' \code{\link{ModelFrame}} \tab Model frame \cr
#' \code{\link{ModelSpecification}} \tab Model specification \cr
#' \code{\link[recipes]{recipe}} \tab Preprocessing recipe roles and steps \cr
#' }
#' Response variable types in the input specifications are defined by the user
#' with the functions and recipe roles:
#' \tabular{ll}{
#' \strong{Response Functions}
#' \tab \code{\link{BinomialVariate}} \cr
#' \tab \code{\link{DiscreteVariate}} \cr
#' \tab \code{\link{factor}} \cr
#' \tab \code{\link{matrix}} \cr
#' \tab \code{\link{NegBinomialVariate}} \cr
#' \tab \code{\link{numeric}} \cr
#' \tab \code{\link{ordered}} \cr
#' \tab \code{\link{PoissonVariate}} \cr
#' \tab \code{\link[survival]{Surv}} \cr
#' \strong{Recipe Roles}
#' \tab \code{\link{role_binom}} \cr
#' \tab \code{\link{role_surv}} \cr
#' }
#' Inputs may be combined, selected, or tuned with the following meta-input
#' functions.
#' \tabular{ll}{
#' \code{\link{ModelSpecification}} \tab Model specification \cr
#' \code{\link{SelectedInput}} \tab Input selection from a candidate set \cr
#' \code{\link{TunedInput}} \tab Input tuning over a parameter grid \cr
#' }
#'
#' @name inputs
#'
#' @seealso \code{\link{fit}}, \code{\link{resample}}
#'
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.