View source: R/linear_association.R
run_lm_stats_limma | R Documentation |
Estimate linear-model stats for a matrix of data using limma with empirical Bayes moderated t-stats for p-values
run_lm_stats_limma( mat, vec, covars = NULL, weights = NULL, target_type = "Gene", limma_trend = FALSE )
mat: |
Nxp data matrix with N cell lines and p genes |
vec: |
N vector of independent variables. Can be two-group labels as factors, bools, or can be numeric |
covars: |
Optional Nxk matrix of covariates |
weights: |
Optional N vector of precision weights for each data point |
target_type: |
Name of the column variable in the data (default 'Gene') |
limma_trend: |
Whether to fit an intensity trend with the empirical Bayes variance model |
: data frame of stats
CRISPR = load.from.taiga(data.name='avana-2-0-1-d98f', data.version=1, data.file='ceres_gene_effects', transpose = T) is_panc <- load.from.taiga(data.name = 'ccle-lines-lineages') %>% .[, 'pancreas'] ulines <- intersect(rownames(CRISPR), names(is_panc)) lim_res <- run_lm_stats_limma(CRISPR[ulines,], is_panc[ulines])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.