knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(avesdemazan)
Get the best model
data(best_randslopes)
Get coefficients and make table
best_fit_tab <- as.data.frame(summary(best_randslopes)$coefficients$cond) rownames(best_fit_tab) <- c("Intercept", "Location (MAIN)", "Location (MASE)", "Time") kable(best_fit_tab, caption = "Model output on original (log) scale")
best_fit_tab <- as.data.frame(summary(best_randslopes)$coefficients$cond) rownames(best_fit_tab) <- c("Intercept", "Location (MAIN)", "Location (MASE)", "Time") best_fit_tab2 <- best_fit_tab # Point estimates best_fit_tab2$EstimateExp <- NA best_fit_tab2$EstimateExp[1] <- best_fit_tab2$Estimate[1] best_fit_tab2$EstimateExp[2] <- best_fit_tab2$Estimate[1] + best_fit_tab2$Estimate[2] best_fit_tab2$EstimateExp[3] <- best_fit_tab2$Estimate[1] + best_fit_tab2$Estimate[3] # SE estimates ### GET vcov matrix vcov <- matrix(unlist(vcov(best_randslopes)), nrow = 4) best_fit_tab2$SE <- NA best_fit_tab2$SE[1] <- sqrt(vcov[1,1]) best_fit_tab2$SE[2] <- sqrt(vcov[1,1] + vcov[2,2] + 2*vcov[1,2]) best_fit_tab2$SE[3] <- sqrt(vcov[1,1] + vcov[3,3] + 2*vcov[1,3]) # Confidence intervals ## Lower bound & upper bound best_fit_tab2$LB <- round(exp(best_fit_tab2$EstimateExp - 1.96*best_fit_tab2$SE), 6)*1000 best_fit_tab2$UB <- round(exp(best_fit_tab2$EstimateExp + 1.96*best_fit_tab2$SE), 6)*1000 ## Calculate confidence interval best_fit_tab2$CI <- paste0("(", best_fit_tab2$LB, ", ", best_fit_tab2$UB, ")") # Point Estimate best_fit_tab2$EstimateExp <- round(exp(best_fit_tab2$EstimateExp), 6) * 1000 # Drop time effect row best_fit_tab2 <- best_fit_tab2[-4,] # Select point estimate and 95% CI columns best_fit_tab2 <- best_fit_tab2[,c(5,9)] # Format rownames(best_fit_tab2) <- c("Secondary forest (LLAV)", "Introduced forest (MAIN)", "Primary forest (MASE)") colnames(best_fit_tab2) <- c("Baseline captures per 1,000 net hours", "95% Confidence Interval") kable(best_fit_tab2, caption = "Transformed model estimates")
table produced above is just intercept terms for main effects - not needed (?)
We estimate that the baseline (time = 0) capture rate per 1,000 net hours is 7.191 (95\% CI (5.383, 9.606)) in secondary forest, 5.820 (95\% CI (4.226, 8.015)) in introduced forest, and 4.423 (95\% CI (3.153, 6.206)) in primary forest. We estimate a 2.8\% (95\% CI (0.9\%, 4.6\%)) decrease in capture rate between years in all habitats. **
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.