knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
#library(countpva)

Dennis et al Figure 5 1959 to 1987

Morris & Doak 20002

census <- 1:39
year.t   <- 1959:1997
females.N <- c(44,47,46,44,46,
               45,46,40,39,39,
               42,39,41,40,33,
               36,34,39,35,34,
               38,36,37,41,39,
               51,47,57,48,60,
               65,74,69,65,57,
               70,81,99,99)
lambda.i <- females.N[-1]/females.N[-length(females.N)]
lambda.i <- c(lambda.i,NA)
hist(lambda.i)
lambda_log <- log(lambda.i)

mean(lambda_log, na.rm = T)
var(lambda_log, na.rm = T)

x.i <- year.t[-1]-year.t[-length(females.N)]
x.i <- sqrt(x.i)
x.i <- c(x.i, NA)
y.i <- lambda_log/x.i
mean(lambda.i, na.rm = T)
var(lambda.i, na.rm = T)
bear_N <- cbind(census,
                year.t,
                females.N,
                lambda.i, 
                lambda_log,
                x.i,
                y.i)

bear_N <- as.data.frame(bear_N)

head(bear_N)
tail(bear_N)
plot(females.N ~ year.t, data = bear_N, type = "b", col = 2, lwd = 3, lty = 3)
plot(lambda_log ~ females.N, data = bear_N, type = "p", col = 2, lwd = 3, lty = 3)
plot(lambda_log ~ females.N, data = bear_N, type = "p", col = 2, lwd = 3, lty = 3)
bear_lm <- lm(y.i ~ -1 + x.i, data = bear_N)
bear_lm_summary <- summary(bear_lm)
bear_lm_summary$coefficients["x.i","Pr(>|t|)"] # P value for mu Ho = 0

bear_lm_anova <- anova(bear_lm)

mu_dennis <- coef(bear_lm)
mu_dennis_ci <- confint(bear_lm)

sigma2_dennis <- bear_lm_anova["Residuals","Mean Sq"]

# df = q = number of transitions
q.transitions <- length(na.omit(bear_N$lambda.i))
df <- q.transitions-1
chi2.025 <- qchisq(0.025, df)  
chi2.975 <- qchisq(0.975, df)  

sigm2_dennis_ci_up <- df*sigma2_dennis/chi2.025
sigm2_dennis_ci_lo <- df*sigma2_dennis/chi2.975

sigma2_dennis_ci <- c(sigm2_dennis_ci_lo,sigm2_dennis_ci_up)

lambda_dennis <- exp(coef(bear_lm))
plot(y.i ~ x.i, data = bear_N, type = "p", col = 2, lwd = 3, lty = 3,
     xlim = c(0,1.125))
abline(bear_lm)

Durbin-Watson test for autocorrelation

e.i <- resid(bear_lm)

sum(((e.i[-1]-e.i[-length(e.i)])^2))/sum(e.i^2)

Durbin-Watson test for autocorrelation

car::durbinWatsonTest(dennis_mod)
car::durbinWatsonTest(resid(dennis_mod))


lmtest::dwtest(dennis_mod)
lmtest::dwtest(y.i ~ -1 + x.i, data = bear_N)
lmtest::bgtest(dennis_mod)


brouwern/countpva documentation built on Dec. 19, 2021, 11:48 a.m.