knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(elktoeChemistry) library(dplyr) library(entropart) library(ggplot2) analysis_data <- readRDS(params$inputs$analysis)
site_colors <- c("LiTN 1" = "#99d8c9", "LiTN 2" = "#41ae76", "LiTN 3" = "#005824", "Tuck 1" = "#fdae6b", "Tuck 2" = "#f16913", "Tuck 3" = "#8c2d04", "Baseline" = "#525252")
dt <- analysis_data( contrast = "all", test_data_FUN = identity, transect_opts = list( .layers = c("ipx", "ncr", "psm", "pio", "opx") ) ) %>% select(signal, species, element, data) %>% tidyr::unnest(cols = data) %>% select( signal, species, final_status, river, site, id, obs, transect, layer, annuli, element, value) %>% group_by( signal, species, final_status, river, site, id, layer, annuli, element, ) %>% summarise( value = sum(value) )
adt <- dt %>% ungroup() %>% mutate( layer_annuli = if_else(is.na(annuli), as.character(layer), paste(layer, annuli)), layer_annuli = factor(layer_annuli, levels = c("ipx", paste("ncr", LETTERS[1:13]), "psm", "pio", "opx")), ) %>% select( signal, species, site, final_status, id, layer, annuli, layer_annuli, element, value )
get_diversity_data <- function(df){ df %>% mutate( dp = purrr::map( .x = mc, .f = ~ DivProfile( q = seq(0, 2, by = 0.1), MC = .x, Biased = FALSE) ), beta = purrr::map( dp, ~ tibble( q = .x[["Order"]], value = .x[["TotalBetaDiversity"]] ) ) ) }
ncrdt <- adt %>% filter(species == "Arav", layer == "ncr", annuli <= "C") %>% select(-final_status, -layer, -layer_annuli) %>% group_by( signal, species, site, id ) %>% filter(any(annuli > "A")) %>% group_nest() %>% mutate( data = purrr::map( .x = data, .f = ~ tidyr::pivot_wider( .x, names_from = "annuli", values_from = "value") ), mc = purrr::map( .x = data, .f = ~ MetaCommunity(.x[ , -1]) ), ) %>% get_diversity_data()
pdt <- ncrdt %>% select(signal, species, site, id, beta) %>% tidyr::unnest(beta) ggplot( data = pdt, aes(x = q, y = value, id = id, color = site) ) + geom_line() + scale_color_manual(values = site_colors) + facet_grid(signal ~ .)
ncr_summary <- ncrdt %>% select( signal, species, site, id, mc ) %>% group_by(signal, species, site) %>% group_nest() %>% mutate( mc = purrr::map( .x = data, .f = ~ MergeMC(.x$mc, Weights = sapply(.x$mc, function(x) (x$N))) ) ) %>% get_diversity_data()
pdt <- ncr_summary %>% select(signal, species, site, beta) %>% tidyr::unnest(beta) ggplot( data = pdt, aes(x = q, y = value, id = site, color = site) ) + geom_line() + scale_color_manual(values = site_colors) + facet_grid(signal ~ .)
layer_dt <- adt %>% filter(is.na(annuli) | annuli <= "C") %>% select(-final_status, -layer, -annuli) %>% group_by(signal, species, site, layer_annuli) %>% group_nest() %>% filter(species == "Arav") %>% mutate( data = purrr::map( .x = data, .f = ~ tidyr::pivot_wider( .x, names_from = "id", values_from = "value") ), mc = purrr::map( .x = data, .f = ~ MetaCommunity(.x[ , -1]) ) ) %>% get_diversity_data()
pdt <- layer_dt %>% filter(signal == "base") %>% select(species, site, layer_annuli, beta) %>% tidyr::unnest(cols = beta) ggplot( data = pdt, aes(x = q, y = value, group = site, color = site) ) + geom_line() + scale_color_manual( values = site_colors ) + scale_y_continuous( "Effective number of individuals" ) + scale_x_continuous( "Order of diversity" ) + facet_grid(species ~ layer_annuli, scales = "free_y") + theme_bw()
layer_dt_2 <- layer_dt %>% # select(-final_status, -layer, -annuli) %>% group_by(signal, species, layer_annuli) %>% group_nest() %>% mutate( mc = purrr::map( .x = data, .f = ~ MergeMC(.x$mc, Weights = sapply(.x$mc, function(x) (x$N))) ) ) %>% get_diversity_data()
pdt <- layer_dt_2 %>% filter(signal == "base") %>% select(species, layer_annuli, beta) %>% tidyr::unnest(cols = beta) ggplot( data = pdt, aes(x = q, y = value) ) + geom_line() + # scale_color_manual( # values = site_colors # ) + scale_y_continuous( "Effective number of sites" ) + scale_x_continuous( "Order of diversity" ) + facet_grid(species ~ layer_annuli, scales = "free_y") + theme_bw()
layer_dt <- adt %>% filter(is.na(annuli) | annuli <= "C") %>% filter(site != "Baseline", !is.na(final_status)) %>% select(-site, -layer, -annuli) %>% group_by(signal, final_status, species, layer_annuli) %>% group_nest() %>% filter(species == "Arav") %>% mutate( data = purrr::map( .x = data, .f = ~ tidyr::pivot_wider( .x, names_from = "id", values_from = "value") ), mc = purrr::map( .x = data, .f = ~ MetaCommunity(.x[ , -1]) ) ) %>% get_diversity_data()
pdt <- layer_dt %>% filter(signal == "base") %>% select(species, final_status, layer_annuli, beta) %>% tidyr::unnest(cols = beta) ggplot( data = pdt, aes(x = q, y = value, group = final_status, color = final_status) ) + geom_line() + # scale_color_manual( # values = site_colors # ) + scale_y_continuous( "Effective number of individuals" ) + scale_x_continuous( "Order of diversity" ) + facet_grid(species ~ layer_annuli, scales = "free_y") + theme_bw()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.