| svycdf | R Documentation | 
Estimates the population cumulative distribution function for specified
variables.  In contrast to svyquantile, this does not do
any interpolation: the result is a right-continuous step function.
svycdf(formula, design, na.rm = TRUE,...)
## S3 method for class 'svycdf'
print(x,...)
## S3 method for class 'svycdf'
plot(x,xlab=NULL,...)
formula | 
 one-sided formula giving variables from the design object  | 
design | 
 survey design object  | 
na.rm | 
 remove missing data (case-wise deletion)?  | 
... | 
 other arguments to   | 
x | 
 object of class   | 
xlab | 
 a vector of x-axis labels or   | 
An object of class svycdf, which is a list of step functions (of
class stepfun)
svyquantile, svyhist, plot.stepfun
data(api)
dstrat <- svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat, 
    fpc = ~fpc)
cdf.est<-svycdf(~enroll+api00+api99, dstrat)
cdf.est
## function
cdf.est[[1]]
## evaluate the function
cdf.est[[1]](800)
cdf.est[[2]](800)
## compare to population and sample CDFs.
opar<-par(mfrow=c(2,1))
cdf.pop<-ecdf(apipop$enroll)
cdf.samp<-ecdf(apistrat$enroll)
plot(cdf.pop,main="Population vs sample", xlab="Enrollment")
lines(cdf.samp,col.points="red")
plot(cdf.pop, main="Population vs estimate", xlab="Enrollment")
lines(cdf.est[[1]],col.points="red")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.