Description Usage Arguments Details Examples
Converts a raster of counts to a raster of presence-only or presence-absence
1 | raster_pres(r)
|
r |
A raster |
This function sets any values >= 1 to 1. If the background values of the raster are NA, they remain NA in the output, allowing the raster to be interpreted as presence-only. If the background values of the raster are 0, then the result will be also contain 0s, allowing the raster to be interpreted as presence-abscence.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | #Load example data
data(acoustic)
#Process detections
proc.det <- proc_dets(det = acoustic$detections, sta = acoustic$stations)
#Create COAs
coas.60 <- coa_locs(proc.det)
#Initialize a base raster
r.sa <- init_raster(study_area = acoustic$study_area, res = 0.005)
#Rasterize COAs
coa.r <- rasterize_dets(det_locs = coas.60, r = r.sa)
#Presence-only layer for all animals in the dataset
coa.pres <- raster_pres(coa.r)
#Plot
plot(coa.pres)
##Use tidy workflow to create presence for multiple individuals
library(dplyr)
#Animal 1
ani1 <- coas.60 %>%
filter(id == unique(id)[1]) %>%
rasterize_dets(r.sa) %>%
raster_pres()
#Animal 2
ani2 <- coas.60 %>%
filter(id == unique(id)[2]) %>%
rasterize_dets(r.sa) %>%
raster_pres()
#Animal 3
ani3 <- coas.60 %>%
filter(id==unique(id)[3]) %>%
rasterize_dets(r.sa) %>%
raster_pres()
#Animal 4
ani4 <- coas.60 %>%
filter(id==unique(id)[4]) %>%
rasterize_dets(r.sa) %>%
raster_pres()
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.