#' evorates: Fitting continuously variable rate models to comparative data on continuous traits
#'
#' This package implements a Bayesian method for fitting "relaxed" models of continuous trait evolution
#' to comparative data (i.e., a phylogeny and associated trait data), whereby the rate of trait evolution
#' itself gradually changes over time and across lineages. More details on the model and method can
#' be found in the
#' \link[=https://academic.oup.com/sysbio/advance-article/doi/10.1093/sysbio/syac068/6830631]{associated manuscript}.
#' The package provides additional tools for simulating data, as well as manipulating, analyzing, and visualizing
#' estimated model parameters. Below is a broad overview of the available functions in this package:
#'
#' @section Basic functions:
#' \itemize{
#' \item{To simulate data, use \code{\link{sim.evorates}()}.}
#' \item{To fit data to models, use \code{\link{fit.evorates}()} (which is a wrapper for the functions
#' \code{\link{input.evorates}()}, \code{\link{run.evorates}()}, and \code{\link{output.evorates}()},
#' which may be used to provide finer control over certain aspects of the model fitting process).}
#' \item{To check that fitted model converged and sampled posterior distributions adequately, use
#' \code{\link{check.mix}()} and \code{\link{check.ess}()}.}
#' \item{To subset, combine, or thin Hamiltonian Monte Carlo chains in a fitted model, use
#' \code{\link{select.chains}()}, \code{\link{combine.chains}()}, \code{\link{exclude.warmup}()}, and
#' \code{\link{thin.chains}()}}.
#' }
#'
#' @section Analysis functions:
#' \itemize{
#' \item{To calculate Savage-Dickey raitos and see if a fitted model yields "substantial" evidence for
#' rate heterogeneity, use \code{\link{get.sd}()}.}
#' \item{For extraction, summarization, and manipulation of posterior samples (including
#' calculating posterior probabilities!), see documentation on
#' the \code{\link[=param_block-class]{param_block}} class and associated documentation on the
#' \code{param_block} operators \code{\link[=grapes-chains-grapes]{\%chains\%}()},
#' \code{\link[=grapes-quantiles-grapes]{\%quantiles\%}()},
#' \code{\link[=grapes-means-grapes]{\%means\%}()},
#' \code{\link[=grapes-diagnostics-grapes]{\%diagnostics\%}()},
#' and \code{\link[=grapes-select-grapes]{\%select\%}()}, as well as the functions
#' \code{\link{par.c}()} (for combining parameter blocks), \code{\link{rnorm.par}()}
#' (for generating parameter blocks of normal random samples), and \code{\link{pwc}()}
#' (for doing pairwise comparisons among parameter blocks).}
#' \item{For convenient extraction of average rates along each branch, use \code{\link{get.R}()}}.
#' \item{To "adjust" rates for trends, use \code{\link{remove.trend}()}}.
#' \item{To calculate "background rates" and summarize rates over different parts of a phylogeny,
#' use \code{\link{get.bg.rate}()}.}
#' \item{To sample posterior distributions of trait values at nodes (i.e., ancestral state estimation)
#' in a phylogeny given a fitted model, use \code{\link{get.post.traits}()}.}
#' }
#'
#' @section Plotting functions:
#' \itemize{
#' \item{There are plotting methods for simulated data and fitted models; see
#' \code{\link{plot.evorates}()} and \code{\link{plot.evorates_fit}()} (NOTE:
#' documentation still under construction).}
#' \item{You WILL be able to plot plots of posterior samples vs. chain iterations
#' ("traces") very soon using \code{\link{trace.plot}()}!}
#' \item{You can plot histograms/density plots ("profiles") of posterior samples
#' using \code{\link{prof.plot}()}.}
#' \item{A lot of these functions rely on a nice little helper function
#' \code{\link{alter.cols}()}, which can be used to mix a vector of colors with
#' other colors or modify transparency.}
#' \item{I plan on developing another function some day, perhaps called \code{level.plot()} or
#' something like that, which will plot 2D histograms/density plots similarly to
#' \code{\link[graphics]{smoothScatter}()} and \code{\link[graphics]{contour}()}. The idea
#' is to be able to look at posterior correlations among parameter estimates.}
#' }
#'
#' @section Miscellaneous functions (NOTE: documentation still largely under construction):
#' \itemize{
#' \item{Use \code{\link{get.clade.edges}()} to extract the edge indices in a phylogeny
#' associated with a particular clade (defined by either its most recent common ancestor or
#' a group of tip labels). You can also use \code{\link{exclude.clade}()} to take edges
#' associated with some nested subclade out of a larger clade.}
#' \item{The function \code{\link{edge.vcv}()} calculates the "edgewise" variance-covariance
#' matrix of a phylogeny. Normally, phylogenetic variance-covariance matrices describe
#' the covariance structure of trait values \emph{at nodes} expected under a Brownian Motion
#' model. Edgewise variance-covariance matrices instead describe the covariance structure
#' of \emph{average trait values along each branch} expected under a Brownian Motion model.}
#' \item{Some functions rely a nice helper function, \code{\link{multi.bind.tip}()}, which
#' wraps and generalizes the \pkg{phytools} function \code{\link[phytools]{bind.tip}()} to handle
#' binding multiple tips to a phylogeny at once.}
#' \item{There are \code{Ntip()}, \code{Nedge()}, and \code{Nnode()} methods for simulated
#' data and fitted models to quickly extract these quantities as necessary.}
#' \item{Further, there are some new convenient methods for extracting topological information
#' from phylogenies, simulated data, and fitted models:
#' \itemize{
#' \item{Use \code{\link{edge.ranges}()} to get start and end times of each edge in a phylogeny
#' in matrix form (with a row for each edge and two columns for start and end times).}
#' \item{There are new edgewise
#' "tree-walking" functions for getting edge indices corresponding to the ancestor,
#' descendants, or sisters for each edge in a phylogeny: \code{\link{anc.edges}()},
#' \code{\link{des.edges}()}, and \code{\link{sis.edges}()}.}
#' \item{You can use \code{\link{tip.edges}()} to get the edge indices for each tip
#' in a phylogeny and \code{\link{root.edges}()} to get indices of edges descending from
#' the root node.}
#' \item{Lastly, you can use \code{\link{ladder}()} to "ladderize" edges in a phylogeny.
#' In the context of simulated data and fitted evorates models, this also rearranges
#' edgewise information like branchwise rates accordingly.}
#' }}
#' }
#'
#' @docType package
#' @name evorates
#' @import Rcpp methods graphics ape
#' @importFrom phytools bind.tip
#' @importFrom rstan sampling extract Rhat ess_bulk ess_tail
#' @importFrom logspline logspline dlogspline
#' @useDynLib evorates, .registration=TRUE
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.