Man pages for btaschler/mcap
Model-Based Clustering in High Dimensions via Adaptive Projections

CentrePerGroupCentre a data matrix to mean zero (per group)
ClusterStabilityCompute cluster stability of MCAP output
ComputeSEMCompute standard error of the mean for an input vector
GMMwrapperWrapper to do clustering with Gaussian mixture models
GramPCAPerform PCA using Gram matrix
HCLUSTwrapperWrapper to do hierarchical clustering
KMwrapperWrapper to do K-means clustering
mcapmcap: Model-based clustering in very high dimensions via...
MCAPfitModel based clustering via adaptive (linear) projections
OptDimClusterStabilityDetermine optimal projection dimension (PCA or random...
Precision2PartialCorCompute partial correlation matrix from inverse covariance...
Rand1Return a random sign vector
RandProjectRandom projection of input matrix X
Rank2NormalityTransform data matrix to normality based on rank
SPECTRALwrapperWrapper to do spectral clustering
btaschler/mcap documentation built on May 26, 2019, 1:31 a.m.