Description Usage Arguments Details Value Author(s) References See Also Examples
"MCAPfit"
performs model based clustering using full variance
Gaussian mixtures in a lower dimensional projected space obtained via
adaptive (linear) projections.
Projection variants include PCA-based and random projection.
1 2 3 |
xx |
The data matrix (n x p). |
k |
The number of clusters. |
projection |
Projection method ( |
true_labels |
Vector of true cluster assignments (when provided, it is used to compute the Rand index). |
centering_per_group |
Logical, when true: mean centre input matrix (if true labels are provided: centre data per group) |
parallel |
Logical, when true: perform line search over projection dimension in parallel. |
verbose |
Logical, when true: print some progress information. |
... |
Additional options for |
...
fit_gmm |
Model fit (GMM output of |
fit_q_opt |
Output of |
Bernd Taschler: bernd.taschler@dzne.de
Sach Mukherjee: sach.mukherjee@dzne.de
Taschler, B., Dondelinger, F. and Mukherjee, S. (2019) Model based clustering via adaptive projections https://arxiv.org/pdf/??.pdf
GMMwrapper
,
OptDimClusterStability
,
ClusterStability
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## small standard Normal matrix with random labels:
MCAPfit(xx=matrix(rnorm(200),20,10), k=2, projection='PCA',
true_labels = round(runif(20)), parallel=TRUE)
## Not run:
## sparse random projection:
MCAPfit(xx=rbind(matrix(rnorm(5e4),100,500), matrix(rnorm(5e4,mean=1),100,500)),
k=2, projection='li,
true_labels=c(rep(0,100),rep(1,100)), parallel=TRUE)
## sparse random projection, removing the mean signal:
MCAPfit(xx=rbind(matrix(rnorm(5e4),100,500), matrix(rnorm(5e4,mean=1),100,500)),
k=2, projection='li, centering_per_group=TRUE,
true_labels=c(rep(0,100),rep(1,100)), parallel=TRUE)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.