R/RcppExports.R

Defines functions sqexp sqexp_cross sqexp_common polykernel par_ep seq_ep par_ep_predict par_ep_damping gp_mcla c_gpr mc_sqexp_common mc_normpoly_common nystrom nystrom_inv nystrom_inv2 nystrom_parallel normalized_polykernel sqexp_kernel par_sepkernel

# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393

sqexp <- function(X, hyperparams, scale = 1.0, noise = 1e-6) {
    .Call(`_gpexperiments_sqexp`, X, hyperparams, scale, noise)
}

sqexp_cross <- function(X_train, X_test, hyperparams, scale = 1.0) {
    .Call(`_gpexperiments_sqexp_cross`, X_train, X_test, hyperparams, scale)
}

sqexp_common <- function(X, lengthscale, scale = 1.0, noise = 1e-6) {
    .Call(`_gpexperiments_sqexp_common`, X, lengthscale, scale, noise)
}

polykernel <- function(X, sig_zero, pwr = 1L, scale = 1.0, noise = 1e-6) {
    .Call(`_gpexperiments_polykernel`, X, sig_zero, pwr, scale, noise)
}

par_ep <- function(y, cov_matrix, tol, max_iters, verbose) {
    .Call(`_gpexperiments_par_ep`, y, cov_matrix, tol, max_iters, verbose)
}

seq_ep <- function(y, cov_matrix, tol, max_iters, verbose) {
    .Call(`_gpexperiments_seq_ep`, y, cov_matrix, tol, max_iters, verbose)
}

par_ep_predict <- function(y, cov_matrix, cov_lower, cov_between, tol, max_iters, verbose) {
    .Call(`_gpexperiments_par_ep_predict`, y, cov_matrix, cov_lower, cov_between, tol, max_iters, verbose)
}

par_ep_damping <- function(y, cov_matrix, tol, max_iters, verbose, damping) {
    .Call(`_gpexperiments_par_ep_damping`, y, cov_matrix, tol, max_iters, verbose, damping)
}

gp_mcla <- function(covmat, targets, n_classes, tol = 1e-10, max_iters = 20L, verbose = FALSE) {
    .Call(`_gpexperiments_gp_mcla`, covmat, targets, n_classes, tol, max_iters, verbose)
}

c_gpr <- function(K_UL, y, K_UR, K_LR, noise) {
    .Call(`_gpexperiments_c_gpr`, K_UL, y, K_UR, K_LR, noise)
}

mc_sqexp_common <- function(X, inv_ls_vec, scale = 1.0, noise = 1e-6) {
    .Call(`_gpexperiments_mc_sqexp_common`, X, inv_ls_vec, scale, noise)
}

mc_normpoly_common <- function(X, sig_shift, sig_scale, power = 1L, noise = 1e-6) {
    .Call(`_gpexperiments_mc_normpoly_common`, X, sig_shift, sig_scale, power, noise)
}

nystrom <- function(K, n_pts = 10L) {
    .Call(`_gpexperiments_nystrom`, K, n_pts)
}

nystrom_inv <- function(K, n_pts = 10L, noise = 1e-8) {
    .Call(`_gpexperiments_nystrom_inv`, K, n_pts, noise)
}

nystrom_inv2 <- function(K, n_pts = 10L, noise = 1e-6) {
    .Call(`_gpexperiments_nystrom_inv2`, K, n_pts, noise)
}

nystrom_parallel <- function(K, n_pts = 10L) {
    .Call(`_gpexperiments_nystrom_parallel`, K, n_pts)
}

normalized_polykernel <- function(X_i, X_j, sig0, powval = 1L, sig1 = 1.0) {
    .Call(`_gpexperiments_normalized_polykernel`, X_i, X_j, sig0, powval, sig1)
}

sqexp_kernel <- function(X_i, X_j, inv_ls, sig1 = 1.0) {
    .Call(`_gpexperiments_sqexp_kernel`, X_i, X_j, inv_ls, sig1)
}

par_sepkernel <- function(x_mat, hyperparams, sig_noise = 1e-6) {
    .Call(`_gpexperiments_par_sepkernel`, x_mat, hyperparams, sig_noise)
}
bvegetabile/gpexperiments documentation built on May 3, 2019, 1:47 p.m.